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Abstract: The data set of batch biological and biotechnological processes can be 
organized in a three-way data matrix. In this paper the usefulness of different PCA 
approaches for monitoring is analyzed.  Different ways of unfolding and scaling of data 
have been applied to a pilot-scale SBR data.  PCA is used to reduce the dimensionality 
and to remove the non-linearity dynamic of the data.  Moreover, a new method to select 
the number of principal components is proposed.  Loadings graphics are used to 
determinate the predominant variables for each one.  The results show that whatever 
model can be applied depending on the goal of the monitoring, however the models 
implicate possible false alarms or faults omission.  Copyright © 2006 IFAC 
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1. INTRODUCTION 

 

Biological and biotechnological processes, including 
wastewater treatment plants (WWTP), are 
characterized by time-varying trajectories of all 
process measured variables.  These process variables 
are physical and biological and they occur 
simultaneously.  In addition to that, they contain 
valuable information that can be used to analyze the 
process behaviour establishing operation limits.   
With these limits, it is possible to detect faults or 
upsets within the process.  Nowadays in the 
bibliography, the MSPC approach, based on 
Principal Component Analysis (PCA), is 
implemented in biological and biotechnological 
processes to monitor the performance of a process in 
order to detect faults that may occur and to identify 
or to diagnose the problem.  PCA is the most widely 
used data-driven technique for monitoring in batch 
process which has as its objective the explanation of 
the variance-covariance structure of a multivariate 
dataset through a few linear combinations of the 
original variables with special properties in terms of 
variances (Nomikos, et al., 1994).  In this work, the 
main objective is to compare and to discuss the 
results obtained using different PCA approaches for 
monitoring and diagnosis of a pilot-scale WWTP of 

type SBR.  In Section 2, materials and methods 
implement to compare the PCA models is explained.  
In Section 3 the results will show.  For each one 
model, the results comprise three parts: 1) Linearity 
study for each unfolding using normal probability 
plots. 2) Procedure to select the correspondent 
number of principal components for each one model. 
3) Inspection of the models and validation.  Finally, 
the conclusion are discussed 
 

2. MATERIALS AND METHODS 
 

2.1 Pilot-scale Sequencing Batch Reactor (SBR) 
WWTP 

 

The data used in this paper were collected from a 
pilot-scale SBR system with a working volume of 
80L (Fig. 1) which is operated in a cycle of 6h (4 
cycles per day).  The fill phase start at t=0 – 60 min.  
The first aerobic phase starts at t=61 -210 min.  The 
anoxic phase starts at t=210 – 270 min and the 
second aerobic phase starts at t=271 – 300 min.  
Settling phase occurs at t=301 – 345 min and finally 
draw phase takes the last 15 min.  The excess sludge 
is waste from the end of the second aerobic phase for 
each cycle.  The control of the duration/sequence of 
phases and on/off of peristaltic pumps, mixer and air 



 

     

supply are automatically achieved by a Labview data 
acquisition and control (DAC) system.   
The DAC system consists of computer, 
analog/digital interface cards, sensors, transmitters 
and solid state relays (SSR).  Electrodes for pH, 
Oxidation-Reduction Potential (ORP), Dissolved 
Oxygen (DO), temperature, weight and conductivity 
are installed and connected to the individual sensors 
(6 process variables are measured).  The status of the 
reactor is displayed on the computer and the time 
series of the electrode signals are stored in a data log-
file (Sin, 2004).  A set of measurements is obtained 
every 1 min (360 times points per cycle).  These 
measurements were stored for 13 months which 
compose the database of historical information.  
Only 300 sampling are used to develop the models 
because biological reactions in settling and drawing 
phases are assumed as unimportant, these are the last 
60 time instants. 

 
Fig. 1. Schematic diagram of pilot-scale SBR 
 

2.2. Multiway Principal Component Analysis 
 

Consider a typical batch run in which j=1,2,...,J 
variables are recorded at k=1,2,...,K time instants 
throughout the batch. Similar data is a generated for 
a number of such batch runs i=1,2,...,I.  This results 
in an three-way array X (IxJxK) array as illustrated 
in Fig 2, where the height gives the number of 
batches, I, the width gives the number of 
measurements (sensors), J, and the length gives the 
number of time instants, K.  Each horizontal slice of 
this array is a (J x K) data matrix representing the 
time histories or trajectories for all variables of a 
single batch, i.  Each vertical slice along the i,j-
direction is an IxJ matrix representing the values of 
all the variables for all batches at a common time 
interval (k) (Nomikos and MacGregor, 1994). 
Similarly, each vertical slice along the i,k-direction 
represents the data of one sensor for all batches and 
all time instants. 
The scaling batch data is select before using the 
multiway methods.  Several authors recognize two 
options to make scaling; these are: autoscaling (in 
which the mean trajectories are removed and each 
column has equal variance) and variable scaling or 
group scaling (in which the mean trajectories are 
removed and each variable has equal variance).  
When the scaling data decision is ready MPCA can 
be performed to ordinary PCA on a large two-
dimensional (2-D) matrix constructed by unfolding 
the three-way matrix. Six possible ways of unfolding 
the three-way data matrix X are indicated in Table 1, 
as suggested by Westerhuis. et al. (1999).  When 
aiming at PCA-based monitoring, unfolding types B 
and D will lead to models that are equivalent to the 

models constructed on the C-, respectively E-
unfolded matrices.  Matrix F is the transpose of A, 
and a PCA would just switch the scores and loadings 
of the two matrices if no centring or scaling is 
applied.  
The unfolding used by Nomikos and MacGregor is of 
type D.  This is straightforward for analysis of 
historical data and monitoring in batch process 
because subtracting the mean of each column of the 
matrix X removes the main nonlinear and dynamic 
components in the data.  Nevertheless, batch-wise 
unfolding (type D and E) present a problem for 
monitoring in real time since the new batch is 
incomplete during the progress of the batch 
(Nomikos, et al., 1994).  Nomikos and MacGregor 
suggest 3 ways to overcome the problem of 
incomplete batches in (Nomikos, et al., 1995), while 
not changing the unfolding type. Alternatively, Wold 
suggests a variable-wise unfolded PLS approach, 
which does not require complete batches in (Wold, et 
al., 1987). Applications of batch-wise unfolding 
(type D or E) in biological batch processes can be 
found in Sung Lee, et al. (2005), Sung Lee, et al. 
(2003), and Wold, et al., (1998). 
 

Table 1 Types of unfolding a three way data matrix 
 

Type Structure* Direction** 
A IK x J variable 
B JI x K time 
C IJ x K time 
D I x KJ batch 
E I x JK batch 
F J x IK variable 

*Structure of the unfolding matrix 
**Direction that remains unaltered 

 
Fig. 2. Decomposition of X to 2-D (IK x J)  

 
Fig. 3. Decomposition of X to 2-D (I x JK) 
 

In this work the ways A (Fig. 2) and E (Fig. 3) are 
used. Type E was chosen instead ot the 
mathematically equivalent type D, for easiness of 
interpretation.  The goal in MPCA is to decompose 
the three-way X, into a large two-dimensional matrix 
X separating the data in an optimal way into two 
parts: The noise or residual part (E), which is small 
in the sense of least squares, and the systematic part 
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related to the batches and a second factor (P) related 
to the variables and their time variation (Nomikos, et 
al., 1994). 
MPCA is performed by means of the NIPALS 
algorithm resulting in the matrix X. It is the product 
of the score vector tr and the loading matrices Pr, 
plus a residual matrix E, that is minimized in the 
sense of least-squares: 
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where ⊗ denotes the Kronecker product 
( PtX ⊗=  is ( ) ( ) ( )kjPitkjiX ,,, = ) and R 
denotes the number of principal components 
retained.   The score matrices and loading matrices 
for type A and E have different sizes as show in 0.  
Equation (1) is the 3-D decomposition while 
Equation (2) displays the more common 2-D 
decomposition (Undey, et al., 2002). 
 

Table 2 Size of matrices T and P for types A and E 
 

Matrix Type A Type E 
T (IK x R) (I x R) 
P (J x R) (JK x R) 

 

Abnormal behaviour of a process in batch direction 
is generally identified by means of the Q-statistic or 
the D-statistic, which are compared with control 
limits determining whether the process is in control 
or not. These methods are based on the assumption 
(generally motivated with the central limit theorem) 
that the underlying process follows approximately a 
multivariate normal distribution where the first 
moment vector is zero.  The Q-statistic is a measure 
of the distance of the observation on the reduced 
space to the center of that model.  For batch number 
i, Qi is defined as 
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where ejk are the elements of residual matrix E.  Qi 
indicates the distance between the actual values of 
the batch and the projected values onto the reduced 
space.  The D-statistic or Hotelling T2 statistic, 
measures the distance of the projection of the 
observation on the reduced space to the center of it: 

i
T
ii tStD 1−=  (4) 

where S is the estimated covariance matrix. 
The statistical limits for the variable-wise unfolded 
models are calculated separately for each time instant 
K and each score. Practically the resulting scores are 
reorganized so that the scores of one batch form one 
row vector in a matrix XT. This matrix has I rows 
(one per batch) and T.K columns (one per variable 
per time).  This transformed matrix XT is used to 
derive confidence limits for each time instant and 
each score by estimation of their respective means 
and standard deviations. Thus, for each score an 

average trajectory for its upper and lower tolerance 
limits can be obtained. Residuals are then calculated 
for each time instant as: 

'
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The standard deviation of these residuals RSD RSD 
is a measure of the difference of the new batch to the 
model which is calculates as follows. 
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here R is the number of components in the model and 
M is the number of columns in X.   
 

2.3 Methodology 
 

1959 complete batches were run between from 
December 16th and 2003 to July 18th of 2005.  Each 
of these batches resulted in 6 different trajectories of 
300 samples each, being the weight of the reactor and 
the temperature, the pH, the DO, the ORP and the 
conductivity in the reactor.  The approach taken to 
compare the discussed options in PCA-based 
monitoring is explained in the following paragraphs: 
 

Step 1: The three-way data matrix is first unfolded in 
batch direction (type E). As there was no sufficient 
detailed knowledge available about the process 
behaviour or the type of faults that may have 
occurred,. the data X(I x JK) were normalized using 
autoscaling as suggested by  MacGregor and Kourti 
(Westerhuis, et al., 1999) to construct an MPCA 
model for data screening.  By means of the resulting 
MPCA-model ([number] PC’s), 248 batches were 
identified as being abnormal and were thus excluded 
from the data set for future use. 
Step 2: The 1711 left-over batches were used to 
compare different unfolding and scaling approaches 
to PCA-based monitoring of the pilot-scale SBR  
This size of data base (6x300x1711) is divided in 
order to develop the models with 80% of the total 
data with a three way data matrix of (6x300x1369) 
and 20% to validate the models with a size of 
(6x300x342).  Two options in regard to the unfolding 
are available when considering batch process 
monitoring. One is to unfold the data in batch 
direction (type D or E) or unfold the data into the 
variable direction (type A). For both options; the data 
X(I x JK) are again normalized using three different 
options: Autoscaling (auto): the mean and standard 
deviation of each variable are calculated at each time 
in the batch over all batches.  Variable scaling or 
group scaling (grps): the mean is calculated at each 
time in the batch over all batches and one standard 
deviation per variable is calculated over all batches.  
Continuous scaling (cs): It was applied by Wold 
(Wold, et al., 1987). One mean and one standard 
deviation per variable are calculated over all batches. 
In total six models for SBR monitoring are thus 
generated.  Table 3 summarizes how the respective 
models were labelled in the framework of our 
research.  Before making further inferences, the 
normal probability plot of the first score is made. 
This allows a visual inspection of validity of one of 
the assumptions in PCA modelling (i.e. that the 



 

     

scores exhibit gaussian distributions).  Immediately 
after, a determination’s study of the number of 
principal components and analysis of the models are 
made. 
 

Table 3 Names for each model developed 
 

 Type A Type E 
auto Model 1 Model 4 
grps Model 2 Model 5 
cs Model 3 Model 6 

 

3 RESULTS AND DISCUSSION 
 

3.1 Normal probability plot 
 

Before going into detailed model comparison, it is 
useful to evaluate if the extent of linearization of the 
original data –typically non-linear and dynamic, by 
different combinations of unfolding and scaling 
approaches satisfies the assumption for the normal 
lineal model and if they have an approximately 
normal distribution.  Two hypotheses have been 
achieved in accord with Giudici 2003.  The first one 
state: the value of the response variable is a linear 
combination of the explanatory variables.  This is 
plainly stated for the linear combinations of PCA.  
The second hypothesis is about the data set.  If the 
data comes from populations with normal 
distribution, these could be tested using the Measures 
of Kurtosis and the Quantile-Quantile plot (q-q plot).  
Figure 4 shows the q-q plots for the first PC of all 
models, organized as in Table 3 (models 1 to 6 from 
top to bottom and from left to right). If the values of 
the first PC come from a normal distribution, then 
the plots should appear as a linear curve.  

 
Fig. 4 Q-Q distribution of the first principal 

component for models which are unfolded 
variable-wise (left-side) and batch-wise (right-
side) and scaled with a) Auto b) Group c) 
Continuous approaches 

 

The plots show that the data comes from a normal 
distribution.  The plots are approximate linear for all 
models except for model 2.  This non-linearlities 
correspond to two batches which are removed.  It 

should be noted that none of the 6 combinations 
unfolding type and scaling type, has lead to a 
acceptable removal of non-linearities in the data set. 
This is clearly visible at the left hand side of the q-q 
plot that the variable-wise unfolded models show a 
gap in the plot while the batch-wise unfolded models 
show a bump in the plot in the same region. Still, 
these non-linearities were not considered to be 
extreme violations of the assumptions on linearity; 
however, some errors or omissions could be expected 
when the process monitoring will be developed. 
When faced with extreme non-linearities, process 
monitoring may be improved by applying non-linear 
methods as Kernel PCA (Lee, et al, 2004). 
 

3.2 Determination of the number of principal 
components using the contribution plots 

 

A critical step in PCA modelling is the determination 
of the number of principal components to be retained 
in the model.  Qin, et al., (2000) and Al-Kandari, et 
al., (2005) elaborate on this subject in the framework 
of PCA-based sensor validation and reconstruction.  
In this paper, a new method will show and evaluate 
an alternative based on the loading plots of the 
principal components. The selected principal 
components are limited to a number of components 
that capture all the present variables. The principal 
components are ordered along their captured variance 
(equivalent to ordering by their eigenvalues) from 
high to low and are evaluated in that order.   When 
the dominating variables of the considered principal 
component are already dominating in the yet retained 
components, this and all following components are 
omitted. To illustrate this method, the selection in the 
case of model 4 is explained in detail here. 
Fig. 5 shows the contribution plots of the first eight 
components (8 highest captured variances) for model 
4. It can be observed that temperature and 
conductivity are dominating variables in PC1. The 
same holds for ORP in PC2 and pH in PC3. PC4 is 
dominated by the weight and PC5 is influenced 
mostly by the conductivity values.  In PC6, the DO is 
the dominating variable.  Then, with the first 6 
principal components, all the variables are 
represented.  It can be seen that PC7 and PC8 are 
dominated by DO again.  Based on these 
observations, six principal components are thus 
selected with 86.46% of variance captured total.   
The same approach was taken to select the principal 
components for model 5 and model 6.  It was 
observed (not shown) that the variables could all be 
found as dominating variable in the first 6 
components, although the component in which they 
are respectively dominating was not necessary the 
same.  It was possible to observe that the three types 
of scaling lead to similar captured variances until 
component number five. It is the sixth component 
that magnifies the difference between continuous 
scaling and other scalings.  It should be kept in mind 
that autoscaling and group scaling cause a larger 
decrease in total variance when compared to 
continuous scaling. 
To find the adequate number of principal 
components in variable direction, authors as Kyoo 



 

     

Yoo, et al., (2003) uses the cross validation of the 
prediction residual sum of squares method.  In this 
work has been applied the contribution per variable 
upon the principal components therefore.  In this 
way, Six principal components are selected for 
models 1, 2 and 3.  That decision is due to each PC 
represents variables different. 

 
Fig. 5 Loads graphics from 1 to 8 components 

 

3.3 Validation of the models 
 

To evaluate the performance of the resulting MPCA 
models, the validation dataset was projected onto the 
models. Each batch in the validation set is projected 
on each of the 6 models, the corresponding statistics 
are calculated and checked against their in-control 
limits. That means that,, each batch was classified 6 
times.  First, all results are analyzed together.  Then 
the analyses between the two unfolding types are 
made.  Finally, each model is evaluated separately.  
The Hotelling T2 statistic and Q-statistic charts with 
95%-confidence limit have been used for the batch-
wise unfolded models. For variable-wise unfolded 
models, only the Hotelling T2-statistic was available 
since the number of PC’s was equal to the number of 
variables, in this form the residual matrix is zero.  
First analysis: After projections onto the models, all 
observations (batches) in the validation data set were 
grouped into the following categories:  
• Batches rejected by all models. These 
observations are not commun for comparison of the 
models and are therefore considered to be truly 
abnormal, i.e. detected faults.  
• Batches accepted by none of the models. Also 
these observations are not commun for comparison 
of the models and are therefore considered truly 
normal, i.e. correct acceptance.  
• Batches detected only by one up to five models 
are investigated in detail to understand what 
happened to the process. 

The third category is useful common for model 
comparison consists of 52 batches. By detailed 
inspection it was found out that 47 of these batches 
were abnormal and 5 were normal batches. In table 4 
the number of true alarms, false alarms, false 
acceptances, true acceptances and the total 
misclassifications (false alarms + false acceptances) 
are given. Given the results of the detailed inspection 
of the considered batches, the sum of the number of 
true alarms and the number of false acceptances is 47 
for all models. Likewise, the sum of the number of 
false alarms and the number of true acceptances is 
always 5.  The results are interpreted in terms of the 
effect of the scaling method by comparing the 
models within the group of batch-wise models and 
variable-wise models separately. Afterwards, the 
effect of the unfolding is interpreted by pair-wise 
comparison of the results for the corresponding 
batch-wise unfolded and variable-wise unfolded 
model. 

Table 4 Comparative table of models 
 

 1º Analysis 2º Analysis 

Models 1 2 3 4 5 6 1-3 4-6 

True alarm 15 14 33 7 7 31 35 34 

False acceptance 32 33 14 40 40 16 12 13 

False alarm 0 0 4 0 0 1 4 1 

True acceptance 5 5 1 5 5 4 1 4 

Total error 32 33 18 40 40 17 17 18 

  
 

As can be seen, models 1 and 2 (variable-wise 
unfolding with respect to AS and GS) deliver similar 
results. The number of true alarms (resp. 15 and 14) 
and false acceptances (resp. 32 and 33) differ only by 
one while the number of false alarms (both 0) and 
true acceptances (both 5) are exactly the same.  
When comparing the results for the variable-wise 
model with CS (model 3), with the other variable-
wise models (model 1 and 2) considerable 
differences are seen. As can be seen, the false 
acceptance for model 3 (14) is less than half the false 
acceptance for models 1 and 2 (32 and 33). This 
lowered number of false acceptances is paid off by 
an increased number of false alarms (4), compared to 
model 1 and model 2 (both 0). The overall 
misclassification is however considerably lower (18) 
when they are compared to models 1 and 2 (resp. 32 
and 33). Similar observations can be made with 
regard to the batch-wise unfolded models.  All 
considered numbers are the same for models 4 and 5 
and also in this case, the CS model (model 6) leads to 
a number of false acceptances (16) less than half the 
number obtained for models 5 and 6 (both 40). 
Again, this is paid off by a (small) increase in false 
alarms (1), compared to model 5 and 6 (both 0). 
Similarly to the variable-wise models, the overall 
number of misclassifications is lower for the CS 
model (17), when compared to models 4 and 5 (both 
40).  In order to investigate the effect of unfolding on 
the model performance, the variable-wise unfolding 
models and batch-wise unfolding models are 
compared pair-wise here, i.e. models with the same 
scaling are compared to each other. When comparing 
the results of the autoscaling (AS) models (model 1 
and 4), it can be seen that variable-wise unfolding 



 

     

leads to a lower number of false acceptances (32) 
when compared to the batch-wise unfolding (40), 
while the number of false alarms is the same (both 
0). As a result, the total number of misclassifications 
is 32 and 40 in the case of variable-wise and batch-
wise unfolding respectively. Very similar 
observations can be made when looking at the results 
in case of group scaling (models 2 and 5). The only 
difference lies in an increased (+1) number of false 
acceptances and the corresponding increase of the 
total number of misclassifications.  
Second analysis: When looking at the results in the 
case for continuous-scaling (models 3 and 6), 
observations are different compared to the previous 
case. However the difference is rather small, 
variable-wise unfolding leads to a lower number of 
false acceptances (12) compared to batch-wise 
unfolding (13). In this case, this is paid off by a 
higher number of false alarms (4) in the case of 
variable-wise unfolding compared to the case of 
batch-wise unfolding (1). In the overall number of 
misclassifications, the difference is again small as the 
variable-wise unfolding leads to 17 
misclassifications while the batch-wise unfolding 
leads to 18 misclassifications. In general, it is 
observed that effect of unfolding are smaller than the 
effect of scaling. 
 

CONCLUSIONS 
 

In this paper several approaches to PCA-based 
biological process monitoring that have been 
discussed in literature were compared to each other. 
The constructed models exhibited different two 
common types of unfolding and three conventional 
ways of scaling. In order to compare the performance 
of the models the assumption on linearity of the 
scores was checked for each of the models. The 
number of components needed for modelling was 
checked as well and was found out to be the same for 
all models.  With model 4, all the periods during the 
trajectory are treated equally.  When the data are 
scaled using group scaling the variability in each 
trajectory is loaded more than in the rest of cases.  In 
the event of continuous scaling the variability in one 
trajectory for variable is calculated.  In the same 
way, normalizing in variable direction with auto, 
group and continuous scaling are implemented.  
Making a comparison between validations of the 
models with equal normalizing, it is possible to 
observe that, similar results have been obtained for 
model where the auto and group scaling were 
applied.  In variable direction more batches with 
AOC have been detected with a bit error in the 
classification.   Nevertheless as much as model 3 and 
6 detected more faults than the others but the false 
alarms are incremented.    Based on the results, the 
scaling decision should be related to the objectives of 
whether the operator wants.  Normalizing the data, 
the dynamic of the process is removed getting that 
the models describe close to the reality however it is 
necessary think about the possible false alarms or 
omission at the moment to select the approach. 
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