
THE INFLUENCE OF EXPERIMENTAL DATA QUALITY AND
QUANTITY ON PARAMETER ESTIMATION ACCURACY

Andrews Inhibition Model as a Case Study

A. GUISASOLA1,�, J. A. BAEZA1, J. CARRERA1, G. SIN2, P. A. VANROLLEGHEM2 and J. LAFUENTE1

1Department d’Enginyeria Quı́mica, ETSE, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
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M
odel parameters are usually estimated through minimization algorithms with
respect to experimental data. However, students should realize that the values
obtained in the classical minimization approach are not always correct and need

critical evaluation though the minimum of the cost function is attained. For this purpose,
a typical example of a substrate inhibition model in activated sludge processes (Andrews’
model) was used. Once the parameters were estimated, the confidence intervals were assessed
through a numerical method based on the Fisher Information Matrix. Both procedures were
implemented in MATLABw (software available on request). With this exercise, the student
can easily observe how the reliability of the estimated parameter value increases with the
increase of data quantity and with the decrease of the data measurement error.

Keywords: confidence interval; Fisher Information Matrix; parameter estimation; substrate
inhibition.

INTRODUCTION

The utilization of modelling tools in view of process
design and characterization has become very widespread
in all engineering fields. Model parameters are estimated
through minimization algorithms with respect to exper-
imental data and, afterwards, the calibrated model can be
used for process improvement (e.g., in process design or
process control) (Petersen et al., 2002). However, for a
reliable posterior utilization of the estimated parameters,
the assessment of their confidence interval should be as
important as the estimation of the parameter values them-
selves (Brun et al., 2002; Gernaey et al., 2002).

Recently, a lot of research is being conducted in assessing
the precision of the parameters estimated from experimental
data (Vanrolleghem et al., 1995; Omlin and Reichert, 1999;
Walter and Pronzato, 1999; Dochain and Vanrolleghem,
2001; Brun et al., 2002; Marsili-Libelli et al., 2003).
Confidence interval assessment is not a straightforward
task since many different factors are involved such as the
experimental data, the inherent structure of the model or
the minimization approach used (Beck, 1987).

The exercise proposed in this work was planned so that
the student can understand how the model parameters are
estimated from experimental data and help the student to
realize that each parameter has an uncertainty which

needs to be considered. The teacher can choose whether
students need to implement the whole procedure by them-
selves or, simply, give them the software already
implemented in MATLABw (MATLAB, 2002) and
design an appropriate application for it. The MATLAB
scripts used in this work will be freely provided by the
authors on request.

Mathematical models based on first principles can be
divided into two categories: linear versus non-linear
models. Although linear models are easier to solve,
a wide range of processes and phenomena occurring in
nature as well as in engineered systems are non-linear
and therefore require a non-linear model structure. Hence,
we use here an example of a non-linear model application.
In particular, we focus on studying the relation between the
quality and quantity of experimental measurements and
the confidence intervals of the parameter estimates. For
this purpose, a typical substrate inhibition model within
microbial growth processes (Andrews’ model) was used.

The parameter estimation was carried out with the clas-
sical simplex Nelder and Mead minimization algorithm
(Nelder and Mead, 1965), using as a cost function the
norm of the difference between the experimental data and
the model. The confidence intervals were assessed through
a numerical method based on the Fisher Information Matrix
(FIM). Once the procedure is implemented, several changes
can be made to analyse their influence on the parameter
estimation and the confidence interval assessment. These
changes can be related to the model itself, to the quantity
and quality of the experimental data used or to the initial
guesses in the minimization algorithm.
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The general procedure for parameter estimation error
assessment using the FIM is detailed in the methodology
section after a brief description of model linearity and
normal distribution. The case study used in this work
(i.e., Andrews’ substrate inhibition model) is also described
in this section together with the experimental data gener-
ation procedure. The results section uses the Andrews’
model to assess the effect of quantity and quality of this
experimental data on the value of the confidence interval
of parameter estimates.

METHODOLOGY

Linear Versus Non-Linear Models

Linearity is a basic characteristic of the model which has
a very high impact on the properties of the solution. Two
different kinds of linearity can be distinguished (Walter
and Pronzato, 1999):

. Input linearity: a model is linear in its inputs when it
satisfies the superposition principle with respect to its
inputs (u) [equation (1)].

yM(t, u, a � u1 þ b � u2)

¼ a � yM(t, u, u1) þ b � yM(t, u, u2) (1)

where yM ¼ measured output, u ¼ parameter (u: vector
of parameters), u ¼ input (u: vector of inputs).

. Parameter linearity: a model is linear in its parameters
when it satisfies the superposition principle with respect
to its parameters (u) [equation (2)].

yM(t, a � u1 þ b � u2, u)

¼ a � yM(t, u1, u) þ b � yM(t, u2, u) (2)

Examples of all the linear possibilities are shown in
Table 1.

Linear models are preferred since an analytical solution
can easily be found and many mathematical tools have
already been developed to this end. On the other hand,
non-linear systems may require complex numerical solutions
and that is why they tend to be linearized. This linearization
is performed either because the model can be considered as
linear in the context of this study or because we have been
able to transform it to a linear form by a proper variable
manipulation. For example, the system can be linearized
around some equilibrium point (or steady state). However,
the results obtained from the linearized model will only be
valid close to these parameter and variables values.

Therefore, the utilization of non-linear models [where classi-
cal parameter uncertainty assessment tools can not be used
(see below)] is increasing because of the narrow range of
applicability of linearized non-linear models.

Normal Distribution

The normal distribution [equation (3)] is a two-parameter
distribution that describes the distribution of the population
in terms of probability versus value. In short, for a certain
population with a certain mean (l) and a certain standard
deviation (s), the following describes the probability of
appearance of a certain value around m. Figure 1 shows
an example of normal distribution for l ¼ 10 and s ¼ 2.

f (l,s) ¼
1

s �
ffiffiffiffiffiffi
2p

p � e�(x�l)2=2s2

(3)

Parameter Estimation and Confidence Interval
Assessment

The parameters can be estimated through a minimization
algorithm where the weighed sum of squared errors, J
[equation (4)], between model outputs ~y(k, ~u ) and the
measured outputs ~yM(k) is minimized (k represents a

certain sampling point).
~~Qk is a weighting matrix to balance

the effect of each kind of measurement.

J ¼
XN

k¼1

½~y(k, ~u ) � ~yM(k)�T
~~Qk½~y(k, ~u ) � ~yM(k)� (4)

where N is the number of measurements and ~u is the para-
meter set used to calculate the model outputs.

The presented confidence interval assessment procedure
is based on the FIM (Dochain and Vanrolleghem, 2001).
This matrix is regarded as an indicator of the amount of
information contained in the experimental data. The FIM
is calculated using a linearization of each one of the
output signals in the neighbourhood of the optimal vector

Table 1. Description of the different existing linearities.

Model example Input linearity Parameter linearity

u . u(t) Yes Yes
log(u) þ u(t) Yes No
u . u 2(t) No Yes
log(u) þ u 2(t) No No

Figure 1. Example of normal distribution with l ¼ 10 and s ¼ 2.
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of parameters ~uO. The linearization is conducted for each
parameter as expressed in equation (5).

y(t, ~uO þ du) ¼ y(t, ~uO) þ
@y(t,~u )

@u

" #
uO

�du

¼ y(t, ~uO) þ Y
y
u(t) du (5)

Y
y
u(t) represents the so called output sensitivity function,

which is the derivate of an output variable (y) with respect
to one parameter (u) and can be approximated by a central
difference expression [equation (6)]:

Y
y
u ¼

@y(t, ~u )

@u
(k)

¼ lim
Du!0

y(t, ~u þ Du) � y(t, ~u � Du)

2Du
(6)

The information related to the uncertainties and
dependencies among the estimated parameters can also be

summarized in the FIM (Mehra, 1974). If
~~Qk is calculated

as the inverse of the covariance matrix of the measurement
noise (error), the FIM is defined as equation (7).

FIM ¼
XN

k¼1

~~Y
T

u (k)
~~Qk

~~Yu (k) (7)

The FIM is a square matrix with the same number of
columns and rows as the number of parameters to estimate.
~~Qk is also a square matrix with the same number of col-

umns and rows as output measurements used. If the

measurement error in each sampling time was known,
~~Qk

would be different for each sampling time. However, in
reality, measurement errors depend on the measurement
technique/sensor/instrument itself. Often one finds the
standard errors of the measurements to be absolute, i.e.,

constant. In such a case,
~~Qk becomes a scalar for each

output variable for all sampling times.
An example of the FIM calculation, for a system with

three estimated parameters (u1, u2 and u3) and two output
variables (y1, y2), is given below in equation (8):

FIM ¼
XN

k¼1

a(k) b(k) c(k)

d(k) e(k) f (k)

g(k) h(k) i(k)

2
4

3
5 (8)

where the FIM elements for a certain time (k) correspond to

a(k) b(k) c(k)

d(k) e(k) f (k)

g(k) h(k) i(k)

2
64

3
75

¼

Y
y1
u1(k, ~uO) Y

y2
u1(k, ~uO)

Y
y1
u2(k, ~uO) Y

y2
u2(k, ~uO)

Y
y1
u3(k, ~uO) Y

y2
u3(k, ~uO)

2
64

3
75 �

~Q1(k) 0

0 ~Q2(k)

" #

�
Y

y1
u1(k, ~uO) Y

y1
u2(k, ~uO) Y

y1
u3(k, ~uO)

Y
y2
u1(k, ~uO) Y

y2
u2(k, ~uO) Y

y2
u3(k, ~uO)

" #

~Qi(k) corresponds to the inverse of the covariance of the
measurement noise of the output variable yi for each
sampling point (k). When the measurement error is
considered constant along the experiment, ~Qi becomes a
scalar instead of a vector.

The FIM matrix summarizes the quantity and quality of
information obtained in each experiment as it considers the
output sensitivity functions and the measurement errors of
the experimental data (i.e., precision of an experiment).
Assuming no model mismatch, no data autocorrelation,
white measurement noise (i.e., independent and normally
distributed with zero mean) and uncorrelated errors
(i.e., the measurement error covariance matrix is a diagonal
matrix), the inverse of the FIM provides the lower bound of
the parameter estimation error covariance matrix, which
can be used for assessing the estimation uncertainty
of ~uO (Dochain and Vanrolleghem, 2001) as shown in
equation (9).

COV(~uO) � FIM�1 (9)

Then, approximate standard errors for the estimated par-
ameters can be calculated as the square root of the diagonal
elements of the inverse of the FIM [equation (10)]:

s (ui) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
COV(i,i)

p
where COV ¼ FIM�1 (10)

Hence, the higher the FIM values, the lower the standard
errors estimated. This is understandable if one analyses
which factors make the FIM be higher [equation (7)]:
high parameter sensitivity (high Y

y
u) and low measurement

errors (high
~~Qk).

Note that since output sensitivities of parameters with
respect to measurements are calculated using a model, the
FIM also depends on the structure of the model. The
model structure is a very important issue to take into
account; since the FIM procedure aforementioned is based
on no model mismatch (i.e., the model can describe cor-
rectly the experimental observations with the correct para-
meters). This assumption of ‘correct model’ should not
always be instantaneously accepted without examination.

Software Required

The modelling software used is MATLABw 6.5. The
differential equations are solved using the function ode45.
This solver is based in an explicit Runge–Kutta formula,
the Dormand-Prince pair. Parameter optimization to fit to
experimental data is carried out by using the heuristic
method implemented in the MATLABw function
fminsearch (Nelder–Mead-Simplex) (Nelder and Mead,
1965), using equation (4) as the cost function.

Case Study: Andrews Substrate Inhibition Model

The response of a microbial population to external sub-
strate presence is generally modelled using Monod kinetics.
However, different patterns of dependence on substrate
concentration have been described in the literature. These
different responses are commonly modeled using variants
of the Monod kinetics. Substrate inhibition is a frequent
phenomenon observed in the literature and several
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modifications of Monod kinetics have appeared for its
description (Luong, 1987; Meriç et al., 2002; Han and
Levenspiel, 1988). Andrews’ modification (Andrews,
1968) is probably the most often used substrate inhibition
model [equation (11)].

m ¼
mMAX � S

(S þ KS)(1 þ ðS=KIÞ)
(11)

where mMAX ¼ maximum specific growth rate (d 21), S ¼
substrate concentration (g L21), KS ¼ half-saturation
constant (g L21), KI ¼ inhibition constant (g L21).

This model derives from the Haldane equation (Haldane,
1965), which described enzyme inhibition by the formation
of an inactive complex of the enzyme with two substrate
molecules. In most cases, the ratio KS/KI is considered to
be negligible and, hence, the equation (11) can be simpli-
fied in terms of equation (12):

m ¼
mMAX � S

S þ KS þ ðS2=KIÞ
(12)

Many applications of the Andrews inhibition model can be
found in the literature. An example is the nitrification
process, which is a two-step process where ammonia is
first oxidized to nitrite and subsequently to nitrate. Both
steps are considered to be inhibited by their own substrate:
ammonia and nitrite respectively (Anthonisen et al., 1976;
Carrera et al., 2004).

Case Study: Dynamic Model

The output measurement considered in this study was not
the substrate concentration but the oxygen uptake rate
(OUR) profile. This output variable has high frequency
and accuracy and it is widely used for modelling purposes
because it is relatively easy to measure and meanwhile
provides a lot of information (Spanjers et al., 1998). The
amount of oxygen taken up is stoichiometrically linked to
the substrate consumption rate by means of the biomass
substrate yield. Equation (13) shows [in terms of mass
basis of chemical oxygen demand (COD) and nitrogen]
the biomass growth process that relies on consumption of
a defined organic substrate.

1

Y
CHyOz þ 1 �

1

Y

� �
O2 þ iNB � NH3

�! CHaObNc þ ( � � � )CO2 þ ( � � � )H2O (13)

where CHyOz is the substrate (mg CODS L21), CHaObNc is
the biomass (mg CODB L21), Y is the biomass growth yield
(g CODB g21 CODS) and iNB is the fraction of nitrogen in
biomass (g N g21 CODB).

Equations (14) show a simplified set of ordinary differen-
tial equations to describe the dynamics of the batch reactor
and Table 2 shows the parameters involved.

dX

dt
¼

mMAX � S

(S þ KS þ ðS2=KIÞ)
� X

dS

dt
¼ �

1

Y
�
dX

dt

OUR(t) ¼
(1 � Y)

Y

dX

dt
(14)

Only a few of the parameters of the model [equation
(14)] can be reliably estimated using a single measurement
such as OUR because of identifiability problems (Petersen
et al., 2001; Gernaey et al., 2002). Identifiability analysis
has often shown that parameter estimation from output
measurements depends on the model structure and the
available measurements used for calibration (Dochain and
Vanrolleghem, 2001). It is often shown that only a few of
the total parameters of the model can be estimated using
a single measurement (e.g., respirometric data). Structural
identifiability refers to the assessment of identifiable
model parameters considering the measurements available,
the model characteristics and assuming ideal experimental
data. If the quantity and quality of data is also taken into
account, this step is called practical identifiability. Both
steps can be learned from other sources dedicated for it
e.g., Dochain and Vanrolleghem, 2001). As this is out of
the scope of this current contribution, the parameters
chosen for estimation from the OUR measurements
(mMAX, KS and KI) were selected for illustrative purposes,
whereas the biomass yield and the initial values of substrate
and biomass were assumed known. The selection of the
known and unknown parameters can be changed according
to the user needs. For example, if the kinetic parameters
were considered to be known, the initial values of the
state variables (S, X) would become the unknown para-
meters and could be estimated.

Case Study: Experimental Data Generation

The ‘experimental data’ used in this work were
previously generated with the model described in

Table 2. Model parameters.

Known parameters Unknown parameters

Biomass yield: Y 0.67 (g CODB g21 CODS) mMAX (d 21)
Initial heterotrophic

biomass: X(0)
2000 (mg CODB L21) KS (mg CODS L21)

Initial substrate: S(0) 200 (mg CODS L21) KI (mg CODS L21)
Final time 50 min

Figure 2. OUR profiles: reference (solid line) and experimental (†) (3% of
measurement error).
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equations (14) with mMAX ¼ 6 d 21, KS ¼ 20 mg CODS L21

and KI ¼ 100 mg CODS L21. The OUR profile obtained
(from this point on termed reference OUR) is depicted in
Figure 2. An error was added to each of the experimental
measurements so that the data became more realistic. The
measurement error noise was considered to be white, so
it followed a normal distribution with zero mean. The
MATLABw function normrnd was used to add random
experimental error to the reference OUR. This function
returned a matrix of random numbers chosen from the
normal distribution with the input parameters l (reference
OUR) and s (measurement error). This function is only
available with the statistics toolbox. However, MATLABw

also contains the function random in the normal package
which can be as well used for the ‘experimental data’
generation. The experimental data obtained (using 3% of
relative measurement error) are also depicted on Figure 2.

RESULTS AND ANALYSES

Procedure Implementation. Program Structure

The structure of the software implemented is described
next. First of all, the ‘experimental’ OUR measurements
were generated as indicated in the paragraph above.
Then, mMAX, KS and KI were estimated through the
minimization function fminsearch. The cost function
was defined as the norm of the vector resulting of the differ-
ence between the experimental and the modelled data
[equation (4)]. The OUR profile obtained using the optimal
parameters (which minimize the cost function) was used for
the calculation of the sensitivity functions, which are the
basis for the calculation of the FIM. The sensitivity
function of the output measurements with respect to each
parameter and the FIM were calculated by equations (6)
and (7), respectively.

The measurement error covariance matrix (
~~Qk) for the

respirometric measurements (OUR) was calculated follow-
ing Petersen’s method (Petersen et al., 2001). Petersen’s
method used the data from a period when the value of
the output variable is assumed known. For example,
QOUR can be estimated using a phase without external sub-
strate (i.e., endogenous respiration phase) in which OUR is
assumed to be relatively constant during a short-term
period e.g., 30 min (Figure 3). In this constant OUR
period, the average of the data and the resulting residuals
(the difference between the average OUR value and the
experimental data) are calculated. The measurement error
(s 2) is then calculated as follows [equation (15)]:

s2 ¼
SSE

N � p
(15)

where SSE ¼ sum squared srrors, N ¼ number of OUR
measurements, p ¼ number of parameters.

Then, the measurement error weighting matrix (
~~Qk) is

calculated taking the inverse of s2. This choice of
~~Qk

Figure 3. Example of QOUR estimation.

Figure 4. Influence of the measurement interval on the estimated parameter value (left) and on the confidence interval assessment (right).
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means that the more a measurement error is noise
corrupted, the less it will count in the FIM. Finally,
approximate standard errors for the estimated parameters
can be calculated using equation (10).

Once the procedure is implemented, several changes can
be developed to study their influence on the parameter esti-
mation and the confidence interval assessment. These
changes can be related to the model itself (variations in
the model equations), to the experimental data used
(number and quality) or to the initial guesses in the mini-
mization algorithm. In this study, the influence of the
number of data used for parameter estimation and the influ-
ence of the measurement error of this data were analysed.

Influence of Quantity of Experimental Data

In order to analyse the influence of the data quantity, the
whole procedure was run several times varying the ‘experi-
mental’ measurement interval (sampling frequency): this
was done by varying the number of elements of the same

‘experimental’ OUR vector. The parameter estimation results
and standard deviation assessment are depicted in Figure 4.
On the one hand, as can be seen in Figure 4 (left), there is
a high variability in the parameter estimates depending on
the measurement interval used, particularly in the case of
KI. The general trend observed is the lower the sampling
frequency (the higher the number of measurements), the
closer the final estimated values to the real ones. When the
measurement interval used was higher than one measurement
every 2 min (in this case, less than 20 measurements), the
values of the parameter estimation were not reliable and
differ a lot from the real ones. However, there is also the
possibility to obtain a good set of parameters with a fortunate
set of experimental data, as for example the parameter values
obtained with a measurement interval of 3.5 min. In addition,
if the parameter fitting procedure was repeated with another
experimental data set, different parameter values could be
obtained though the same measurement interval was used.
On the other hand, Figure 4 (right) shows the ratio of the
standard deviation of each parameter [calculated through
equation (10)] over the value of the parameter versus the
measurement interval. The graph shows that the lower
the measurement interval is, the more reliable the values of
the estimated parameters become.

An important fact to highlight is that even though the
measurement error was unique, the relative parameter esti-
mation errors [Figure 4(b)] obtained are different for the
three parameters. The reason can be found by analysing
the sensitivity of OUR to each parameter. As an example,
let us compare mMAX and KI. As can be seen in Figure 5,
in the experiment proposed in this work, the sensitivity of
OUR to mMAX was higher than the sensitivity of OUR to
KI in terms of absolute value. In short, small variations
on the mMAX value would have stronger effects on the
OUR profile than small variations on the KI value.
Hence, the value of mMAX would be always more easily
assessed and the relative estimation error of mMAX would
be always lower than the relative estimation error of KI.

Figure 5. Sensitivity functions of OUR with respect to mMAX, KS and KI.

Figure 6. Influence of measurements error on the parameter estimation (left) and on the confidence interval assessment (right).
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Influence of Quality of Experimental Data

The influence of the data quality was studied through
variation of the experimental data measurement error.
This measurement error appears twice in this example:
firstly when generating the ‘experimental’ data and sec-
ondly when calculating the measurement error covariance
matrix. The results obtained using different measurement
errors are depicted in Figure 6. At first sight, the parameter
estimation results obtained agree with what should be
expected: the increase of measurement error implied
obtaining different parameter estimates [Figure 6 (left)]
and an increase in the confidence intervals [Figure 6
(right)]. Although a good set of estimated parameter
values can be obtained, even with a high measurement
error (see for example error 0.06), the estimates have a
high uncertainty around 10–20% [Figure 6 (right)]. The
repetition of the experiment with the same measurement
error would probably lead to different estimated parameter
values.

The main notion derived form these two studies is that
parameter estimation should be a two-step process: para-
meter optimization þ parameter error assessment. Other-
wise, if only the first step was developed, the student
would not be able to realize whether the obtained para-
meters were far from reality or not. For example, one
should be able to know that the parameter estimation
values obtained with the higher measurement error and
the lower frequency sampling are not as reliable as the
ones obtained with lower measurement error and higher
sampling frequency. As shown on Figures 4 and 5, these
parameter estimation values obtained in both cases are
very different.

CONCLUSIONS

An easily implementable procedure for parameter
estimation and confidence interval assessment is described
using the common Andrews substrate inhibition model as
an example. In addition, to understand the parameter esti-
mation and confidence interval assessment, it is shown to
students that a critical evaluation on the parameter
estimation values is always required. The student will
also realize the importance of the confidence interval
assessment in view of future usage of the parameter esti-
mation values (for example for process design or control).
For this purpose, the effect of the quantity (number of
measurements) and quality (measurement error) of data
on the parameter estimation and confidence interval assess-
ment is also clearly depicted. In general, the results show
that the increase of the measurement frequency and the
decrease of the measurement error imply a more accurate
parameter estimation (in terms of proximity of the

estimated value to the real one and in terms of confidence
interval assessment).
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