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Water

The usable freshwater for ecosystems 
and humans is only 0.01% of all the 
water on Earth.

Freshwater, although a renewable 
resource, is finite and is very 
vulnerable.

Freshwater is collected and “stored” in 
river basins.

Introduction
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EU Water Framework Directive (2000)

Approach for water management:

• by river basin, the natural geographical and 
hydrological unit

• not according to administrative boundaries.

Ecological and chemical protection.

Combined approach:

• emission limits (emission-based)

• water quality standards (immission-based)

Introduction
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EU Water Framework Directive (2000)

River basin management plan: what, when and how.

Public participation:

• balancing interests of various groups

• transparency enforceability

Water pricing:

• true cost

• incentive for sustainable use

Introduction
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Urban wastewater system

Urban environments are not the major sources of 
pollution in a river basin in developed countries.

Why are they interesting?

• represent a “control handle” in river basin governance

• increased urbanisation on the world.

Introduction
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Waste water system optimisation

Introduction
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Long history…

• From 3.000 BC: Mesopotamia, China, Romans, Arabs

• Until 19th century: complex structures but no conceptual 
advances

• Until 20th century: large (utopian) projects for quantity 
management, man governing nature

• 1920s to 1970s: multipurpose planning, dams (“not one 
drop of water should reach the sea”), but also pollution 
concern and river basin organisations

• 1970s to 1990s: pollution, point-source treatment, no 
unified basin management, centralised decisions

History
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1990s - to date

• Ecological state and services

• Recreational use

• Increased complexity, expert knowledge
not sufficient

• Decentralisation, democratisation, 
stakeholder involvement, subsidiarity

History
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Modern urban wastewater systems

• Sewer systems: recent (100-200ys)

• WWTPs: more recent (<100ys)

• Rivers: natural open sewers polluted

• Not considered as a whole:

• emission limits

• different governing bodies/offices

• local optima global optimum

History
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Examples – CD4WC

• Water Framework Directive
– Holistic approach

– « good » chemical and ecological status of natural waters: 
Immission criteria

• www.cd4wc.org

River water quality evaluates the performance of the 
urban wastewater system

Cost-effective development of
urban wastewater systems for
Water Framework Directive compliance

Examples
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River Drau (Austria)

Examples – CD4WC

• Alpine river (steep, cold, high oxygen)

• WWTP: insufficient nitrification in winter

• Irrelevant for discharge into clean and cold water

• Legislative problem

• IUWS: potential economic benefit
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Case-study in Luxembourg
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Examples – CD4WC
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Case-study in Luxembourg
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Case-study in Luxembourg – problems

Problems in the river:

• during summer low DO: < 5 mg/l

• high ammonium: NH4: > 3 mg/l

• high phosphate: PO4: ~ 0.5 mg/l

• localised high algae concentration

Examples – CD4WC
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Case-study in Luxembourg – pressures

Pressures to the river:
Upstream: Alzette carrying wastewater from
populated and industrial South of Luxembourg, 
agriculture,…

WWTP: No denitrification.

Sewer: No storage volume until now, infiltration, river 

water intrusion during high flows in winter, not much 

control potential so far,…

Examples – CD4WC
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Case-study in Luxembourg – our plan

• Measurement campaign on 
the river and the WWTP

• Data collection and deficit
analysis

• Model building and calibration

Develop scenarios to improve quality of the 
eutrophied river and test them using simulations of 
the integrated system.

Examples – CD4WC
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Case-study in Luxembourg – modelling
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Dry Weather Flow 
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Examples – CD4WC



22/76

Case-study in Luxembourg – modelling

Biochemical: 
ASM1, ASM2, 
ASM2d, ASM3, …

RIVER

Sewer

Clarification: Point 
settler, Takacs, …

WWTP

Examples – CD4WC
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Case-study in Luxembourg – modelling

Biochemical:

River Water Quality
Model no.1

WWTPSewer

Transport: 

Tank cascade

River

Examples – CD4WC
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Case-study in Luxembourg – modelling
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Examples – CD4WC
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Case-study in Luxembourg – scenarios

• Source control:
– Ammonia decoupling FlatNH3
– DWF flattening through basins at housing level FlatDWF
– Impervious surface reduction RedImp

• System rehabilitation
– Sewer infiltration reduction RedInf
– Retention basins RetBas
– Buffer tank for incoming sludges Buffer
– Nitrification volume increase NitVol

• Operation strategies
– Increase in WWTP loading OvLo
– Improved nitrogen control ImprN
– Improved phosphorus control ImprP

• River measures
– Shading Sha
– Reaeration Reae

Tested scenarios

Examples – CD4WC



26/76

Case-study in Luxembourg – aeration

Examples – CD4WC
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Case-study in Luxembourg – aeration

Examples – CD4WC



28/76

Case-study in Luxembourg – shading

Examples – CD4WC
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Case-study in Luxembourg – criteria

Evaluation criteria

Immission and Emission

Exceedance = period when a certain
concentration threshold is exceeded

• Exceedance lengths

• Number of exceedances

• Means

• Maxima

• Minima

• Total loads

Examples – CD4WC
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Case-study in Luxembourg – results

Immission: Dissolved Oxygen
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Total Emission Loads from CSOs and WWTP
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• Shading not an option here

• Reaeration helps to improve DO concentrations, but is
expensive

• Background pollution large compared to impact of 
catchment, therefore measures within the catchment 
seem to have little impact

• Measures are often expensive, N-control and P-control 
cheap to implement bringing about good changes

• Infiltration reduction reduces loads significantly

• Imperviousness reduction shows beneficial impact 
(keep impervious surface to a minimum during planning 
processes)

Examples – CD4WC

Case-study in Luxembourg – conclusions
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Benefits of IUWS:

• Possibility to compare effectiveness on
receiving water quality of measures in the
whole system (catchment, sewer, WWTP, river)

• Useful to prioritise investments

Examples – CD4WC

Case-study in Luxembourg – conclusions
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Developed methodology – methodology + practice

Systems analysis
Substance Flow Analysis

Indicators

Systems design (WWTP)
Influent

Modelling

Probabilistic analysis

Emission-based evaluation

Immission-based evaluation

Examples – CD4WC

“WHERE ?”

“HOW ?”
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Outline

Systems analysis
Substance Flow Analysis

Indicators

Systems design (WWTP)
Influent

Modelling

Probabilistic analysis

Emission-based evaluation

Immission-based evaluation

Examples – CD4WC
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Case study for systems analysis

The Nete river basin

Examples – CD4WC
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Substance Flow Analysis

Substance Flow Analysis:
• accounting for the flows of a substance

• to, through and from a system

• over a determined time period

Studied substances:
• water

• BOD

• COD

• Total Nitrogen

• Total Phosphorous

• Zinc

Examples – CD4WC
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Substance Flow Analysis – Sankey diagram

Total Nitrogen [ton/y]

Examples – CD4WC
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Substance Flow Analysis – pressures on RW

WWTP
29%
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19%
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5%

sewer ind
0%
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difficult to tackle

WWTP upgrade

WWTP design

Examples – CD4WC
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Systems analysis – conclusions – SFA

SFA of the IUWS allows to identify the 
pollution paths and the pressures on the 
receiving water.

Stressors in the Nete basin (for all substances):

• unconnected households

• WWTPs

• agriculture (limited to nutrient emissions)

Examples – CD4WC
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Outline

Systems analysis
Substance Flow Analysis
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Systems design (WWTP)
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Modelling
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Examples – CD4WC
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Systems design – “HOW ?”

More information, transparency
uncertainty analysis

Case of WWTP

Aim at general advice:
• 4 climate types

• 3 plant sizes

• 10 plant configurations

Data overload descriptors

Combined approach:
• emission-based evaluation

• immission-based evaluation

Examples – CD4WC
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Outline

Systems analysis
Substance Flow Analysis

Indicators

Systems design (WWTP)
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Modelling

Probabilistic analysis

Emission-based evaluation

Immission-based evaluation

Examples – CD4WC
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Modelling the WWTP influent

Use of long term dynamic influent data:
seasonal effects, variability of disturbances

Simple model of the draining catchment:

• number of inhabitants

• presence of industry

• loads per capita of households
and industry

• size of the catchment

• length of the sewer system

• rainfall data

• interactions with groundwater.

Examples – CD4WC
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Uncertainty

Lack of sureness about something.

From a falling short of certainty to an almost 
complete lack of knowledge.

It is seen as negative.

It is usually disregarded.

It must be made explicit.

Examples – CD4WC
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Probabilistic analysis – uncertainty

Models are imperfect:

• inputs

• parameters

• equations

Information is available on uncertainties:

• probability distributions

Uncertainty is propagated to model output 
(Monte Carlo simulations)

Examples – CD4WC
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Examples – CD4WC
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Probabilistic

Monte Carlo
Simulation

Inputs
Distributions

...

Deterministic

‘Shot’ Deterministic
Model

Discrete

Result
Statististical

Analysis
Result

Distributions

...

Time
0 10 20 30 40 50 60 70 80

C
o

n
ce

n
tr

at
io

n

0

25

50

75

100

125

150

175

200

90 %ile

Average

Probabilistic analysis – uncertainty

Examples – CD4WC
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Probabilistic analysis – time series
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Probabilistic analysis – percentile polygons

Yearly averages for ammonia effluent and aeration costs:
cloud (L) and 5th-95th percentile polygons (R).
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Examples – CD4WC

one “shot”: one plant, 
one parameter set, 

two criteria 
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Probabilistic analysis – feasibility

100 simulations of LLAS model (50d in steady state and 415d dynamic) 
with input and output data every 15 minutes
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Examples – CD4WC
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Outline
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Examples – CD4WC
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Emission-based evaluation of alternatives

Environmental performance:

• effluent TSS, BOD5, COD, TN and TP 
concentrations

• Effluent Quality Index (EQI)

• period of effluent violations
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Emission-based evaluation of alternatives

Economic performance:

• use of cost functions

• depending on the country/region

• rough estimates for process options screening

• sludge production

• energy and chemicals consumption

• data from Aquafin and Ruhrverband

Examples – CD4WC
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Modelling WWTP alternatives

Ten process configurations for design for 30.000PE 
in Oceanic climate:

anaerobic-anoxic-oxic (A2O)

anaerobic-oxic (AO)

Biodenipho

Biodenitro

high loaded activated sludge (HLAS)

low loaded activated sludge with bio-P removal (LLAS)

LLAS with primary settler (PS)

oxidation ditch with bio-P removal (OD_bioP)

oxidation ditch with chemical P removal (OD_simP)

University of Cape Town process (UCT)

Examples – CD4WC
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Emission-based evaluation – design – EQI/TC
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Outline
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Examples – CD4WC



62/76

Low loaded system 300,000PE Continental climate

3 different activated sludge upgrades:

(out of 12 evaluated)

Immission-based evaluation – upgrade

Examples – CD4WC
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Immission-based evaluation – EQI/TC of effluent
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Immission-based evaluation – NH4 in the river
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Systems design – conclusions

Immission-based evaluation:

• “more wastewater” shows bad 
performance for WWTP effluent BUT

• “more wastewater” is much cheaper 
than “construction”

• “more wastewater” performs as well as 
“construction” for receiving water quality

Examples – CD4WC
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Conclusions

Uncertainty is made explicit.

Robustness of configurations against 
process disturbances.

Water quality based regulation 
effluent quality is not sufficient to take 
appropriate and informed decisions 
substantial savings can be achieved with 
IUWS management.

Examples – CD4WC
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CD4WC general conclusions

The actual availability of well-accepted

• models

• risk assessment techniques

• sufficient computational power

Examples – CD4WC
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CD4WC general conclusions

The actual availability of well-accepted

• models

• risk assessment techniques

• sufficient computational power

should move the design practice and planning process

• from the use of conservative and not flexible rules

• to more advanced, transparent and cost-effective
procedures.

Examples – CD4WC
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Industrial districts

Protocol for the quantitative assessment of 
industrial effluents for discharge permitting

Funded by the Water Research Commission of South Africa

• University of KwaZulu-Natal (Prof. Chris Buckley)

• eThekwini Water and Sanitation

• University of Cape Town (Prof. George Ekama)

• Sasol

• BIOMATH

Examples – South Africa
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Case-study – Umbilo WWTP

Examples – South Africa
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Industrial districts

• Study the effect of textile effluents to WWTPs

• Study the removal processes for colour, 
conductivity and heavy metals in WWTPs

• Model the industrial catchment and the WWTP 
to evaluate joined effects on treatment capacity

• Set fair and scientifically sound discharge 
permits legally enforceable

• Provide guidance to the whole South Africa 

Examples – South Africa
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Global Real Time Control for CSO reduction

Examples – Canada

Maximize inflows to WWTP
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Global Real Time Control for CSO reduction

Examples – Canada

Use in-line storage capacity

Maximize inflows to WWTP

Control flows according to rain distribution
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Interactions WWTP-sewer

Examples – Canada
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Québec City project

Examples – Canada
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Québec City project

Examples – Canada

• 550 square kilometres - Population of 470 000

• 2 distinct district and 2 WWTP

• 135 kilometres of interceptors - 50 CSOs

• CSO control plan :
– 2 - 4 overflow per year

– $US 220 million prior to RTC

– $US 140 million with RTC
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Savings

Examples – Canada

$ 85 M$ 25 M$ 110 MWilmington, DE

$ 800 M$ 2 200 M$ 3 000 MIle-de-France

$ 80 M$ 140 M$ 220 MQuebec, Qc

$ 120 - 170 M$ 80 M$ 200 – 250 MLouisville, KY

SavingsWith RTCWithout RTC

• Savings 30% to 70% on
Capital Improvements

• Same environmental objective
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Outline

• Introduction 

• Past – a few words

• Present – several examples

• Future – new developments and challenges
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Developments

Future

More and more integration (also in modelling):

• technical and environmental dimension 
(WWTP, sewer, river, catchment, industry)

• economic dimension

• social dimension
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Challenges

Future

After Water Framework Directive:

• bathing water

• groundwater

• priority pollutants

Climate change:

• temperature

• rainfall dynamics

• migrations
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Conclusions

Modelling the integrated system 
takes some extra efforts but it 
largely pays back.

Great tool to prioritise investments.
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Thank you for your attention !


