

Modelling of the integrated urban river system in view of optimisation of river water quality.

Anne-Marie Solvi, Lorenzo Benedetti, Paul Schosseler, André Weidenhaupt, Peter Vanrolleghem

Presentation Outline

⊅Introduction

→ The case study

→ Modelling tools and the integrated model

• The

→ Scenarios and results

7 Outlook

Introduction: Objectives

- Water Framework Directive
 - → Holistic approach
 - ¬ « good » chemical and ecological status of natural waters:

 Immission crititeria (combined to emission)

River water quality evaluates the performance of the urban wastewater system

Cost-effective optimisation of the integrated operation of the sewer and the WWTP for better river water quality

Introduction: Challenges

- → Complexity of the entire system
- → Different problematics in subsystems:
 - □ different variables of interests
- → Choice of models
- Data availability

Find appropriate models to fulfil objectives

Introduction: Approach

Objectives: Scenario Analysis

Case Study

Data Collection

Model in WEST®

Simulations

Case Study: Catchment

 $\sim 10 \text{ km}^2$

~ 20 semi-rural subcatchments

Domestic discharges: ~ 25000 PE Industrial discharges: ~ 30000 PE

sewer network

Length: ~ 60 km

Case Study: WWTP

Case Study: Measurement Campaign

Water Transport

Case Study: Progress and Objectives

- Measurement campaign on the river and the WWTP (CD4WC).
- Data collection and deficit analysis
- Model building and calibration

Develop scenarios to improve quality of the eutrophied river and test them using simulatons of the integrated system.

How much pressure is this catchment/WWTP exerting?

Modelling & Simulation: Catchment & Sewer

Modelling & Simulation: WWTP

Modelling & Simulation: River

The Integrated Model

The Integrated Model

Catchment & Sewer (1): Construction

- 7 20 catchments
- ⊿ 4 basins / storage pipes
- **7** 6 pumps
- → 16 km main collector

DATA USED:

Population and industry Surface characterisation Geometric data for sewer evaporation & infiltration

The Integrated Model

Catchment & Sewer (2): Calibration

The Integrated Model

Catchment & Sewer (3): Calibration

The Integrated Model

WWTP (1): Construction

- 2 activated sludge units in series (removal of COD, nitrification): ASM2d model
- 7 Chemical phosporous removal by precipitation
- Clarification with ideal settlers

DATA USED:

WWTP dimensions
Water quality measurements
Influent characteristics
Operation schemes
Existing model

LIFE98 ENV/L/000582

The Integrated Model

WWTP (2): Calibration

- Life project: kinetic parameter calibration
- CD4WC project:
 - one week validation
- One year calibration

1 st BioUnit		NEW	
μ_{H}	6.0	3.0	d ⁻¹
b _H	0.6	1.2	d ⁻¹
μ_{AUT}	1.0	1.5	d¹
η _{NO3}	0.8	1.0	1

The Integrated Model

River

- □ Dissolved Oxygen
- → Nitrogen
- → Phosphorus
- → Algae
- → Heterotrophs, autotrophs, nitrifiers

→ Connectors:

→ Conserving elemental mass balances

DATA USED:

Water Level, Solar Radiation, Temperature, Humidity...

Water quality measurements

Tracer tests

The Integrated Model

River

Scenario Analysis

尽 Source control:

Ammonia decoupling	FlatNH3
DWF flattening through basins at housing level	FlatDWF
7 Impervious surface reduction	RedImp

尽 System rehabilitation

_		
7	Sewer infiltration reduction	RedInf
7	Retention basins	RetBas
7	Buffer tank for incoming sludges	SluBu
7	Nitrification volume increase	NitVol
7	Sludgewater Treatment	SluWT

Operation Strategies

7	Increase in WWTP loading	OvLo
7	Improved nitrogen control	ImprN
7	Improved phosphorus control	ImprP

7 River measures

Sha
Reae

Scenario Analysis

Evaluation criteria

Immission and Emission

- Exceedance lengths
- Number of exceedances
- Means
- Maxima
- Minima
- Total loads

Long-term analysis /

Event-based analysis

Scenario Analysis

Immission: Dissolved Oxygen after WWTP

Scenario Analysis

Immission: Ammonium after WWTP

Scenario Analysis

Emissions: WWTP

Scenario Analysis

Total Emission Loads from CSOs and WWTP

PO4

Scenario Analysis

Immissions: Low base concentrations: after WWTP

Scenario Analysis: Costs

Measure	Investments (€	Operation (€)
FlatDWF	++++	
ImpRed	+++	0
InfRed	+++	0
RetBas	+++	+
NitVol	++	0
SluWT	++	++
ImprN	+	
ImprP	0	0
OvLo	0	0
Reae	++	++

Conclusions (1)

Immissions: Existing

- → Hydraulic contributuion of catchment small compared to river flow
- → Background pollution large, therefore measures within the catchment seem to have little impact (Careful: within this modelling context, ≠hydromorphological, ≠ecological...)
- → Shading not an option here

 → Shading not an option here
- → Reaeration helps to improve DO concentrations (needs good planning, operation costs, should be combined with measures at source)

Conclusions (2)

Emissions: Existing

- Measures are often expensive, ImprN and ImprP cheap to implement bringing about good changes
- → SluWT onsite is a good option
- → InfRed reduces loads significantly
- → ImpRed shows beneficial impact (keep impervious surface to a minimum during planning processes)
- ¬ General: measures in sewer are expensive but effective → Source control

Conclusions (3)

Immissions: Low base concentrations

- → Impact of catchment is significantly higher
- → WWTP ammonia peaks found in river concentrations
- Sewer system has an impact at CSO level, especially COD peaks reduced by RetBas and ImpRed (planning)

Conclusions (4)

- → Creation of an integrated model: Same model approach for the 3 subsystem (use of one software)
- **7 Complexity** of scenarios analysis evaluation:
 - → Multiple criteria (costs, quality limits,...)
 - Interactions between subsystems
 - → Evaluation criteria
- → Tool for local, more detailed analysis in the implementation process of the EU Water Framework Directive
- ☐ Integrated model useful for illustrating interaction (education) in urban wastewater engineering

38

Outlook (1)

- → Further investigations of the model (e.g. test control strategies, model uncertainty,...)
- → Data quantity and quality (measurement campaigns)
- → How can such results be linked to ecological tools in evaluations of systems
- **7** ...

Merci.

The presented results have been elaborated in the framework of the European Project CD4WC of the CityNet cluster (FP5).