
A GENERALIZED FRAMEWORK FOR ABSTRACTION AND DYNAMIC
LOADING OF NUMERICAL SOLVERS

Filip H.A. Claeys Peter A. Vanrolleghem Peter Fritzson
Department of Applied Mathematics, modelEAU Programming Environments

Biometrics and Process Control (BIOMATH) Département de ǵenie civil Laboratory (PELAB)
Ghent University Universit́e Laval Link̈oping University

Coupure Links 653 Pavillon Pouliot Campus Valla
B-9000 Gent Qúebec, G1K 7P4 SE-581 83 Linköping

Belgium QC, Canada Sweden
E-mail: fc@biomath.ugent.be E-mail: peter@modelEAU.org E-mail: petfr@ida.liu.se

KEYWORDS

Software development, modelling & simulation, numeri-
cal solvers, abstraction, dynamic loading

ABSTRACT

Scientific software often relies on numerical solvers for
tasks such as integration of differential equations, opti-
mization and finding roots of linear or non-linear sys-
tems. Typically, the availability of only one solver for
a certain task is not sufficient in generic software sys-
tems, since each solver usually only has a limited area of
application. However, the inclusion of multiple solvers
into complex industrial quality software is often cumber-
some. One issue is the fact that solver codes are often
implemented in different programming languages, other
issues are related to a lack of standardization of the meth-
ods provided by the codes, fixed I/O routines and dis-
regard of thread-safety concerns. This article describes
how some of these issues were handled in the scope of
Tornado, an advanced kernel for modelling and virtual
experimentation (i.e., any evaluation of a model). Par-
ticularly important is that in view of the maintainability
and extensibility requirements that are often imposed by
complex scientific software, there is a need for abstrac-
tion and dynamic loadability of solvers.

INTRODUCTION

In many areas, including modelling & simulation, scien-
tific software typically relies on numerical solvers. Ex-
amples of well-known solver types are integrators, opti-
mizers and root finders. Since the advent of digital com-
puting, aplethora of solvers has become available for
each type of task. The problem however is that in spite of
the large number of available solvers for a specific task,
it is very rarely the case that one solver can be identified
that is truly general,i.e., a solver that is capable of appro-
priately solving all problems that fall within the bound-
aries of a certain task. For instance in the case of integra-
tion, no solver can be identified that efficiently solves all
types of ODE’s (Ordinary Differential Equation), DAE’s
(Differential-Algebraic Equation) and PDE’s (Partial Dif-
ferential Equation). Moreover, even for ODE’s it is dif-
ficult to find a solver that can handle stiff and non-stiff
systems equally well.

A scientific software system with a certain degree of
genericity usually allows for performing different tasks
(integration, optimization, . . . ), which implies that sev-
eral types of solvers need to be included. In addition,
since each solver typically can only efficiently handle one
specific class of problems, several instances of each re-
quired solver type must be included. Evidently, the latter
also implies that at a certain point, choices must be made
about which solver to use for a particular problem. In
principle, this choice can either be made by the user on
the basis of expert knowledge and/or prior experience,
or automatically (e.g., through machine-learning tech-
niques based on the analysis of previously collected data)
(Claeys et al., 2006b). The problem of choosing amongst
solver alternatives however is not the focus of this article.
Instead, this article touches on issues that can be encoun-
tered when integrating multiple solvers into complex in-
dustrial quality software systems, and the ways these is-
sues can be overcome.

Throughout this article, the Tornado kernel for modelling
and virtual experimentation is used as a case. Therefore,
the next section constitutes an introduction to Tornado.
Afterwards, a short section is devoted to the availability
of solvers. The two subsequent sections discuss the is-
sues that can be encountered when integrating numerical
solvers into quality software, and the solutions that have
been provided in the scope of Tornado. In each case some
practical examples are given.

THE TORNADO KERNEL

Tornado (Claeys et al., 2006a) is an advanced kernel for
modelling and virtual experimentation (i.e., any evalua-
tion of a model such as simulation, optimization, sce-
nario analysis, . . . ). Although the kernel is generic in
nature, it is mostly adopted in the water quality do-
main (i.e., the study of biological and/or chemical water-
related processes in rivers, sewers and wastewater treat-
ment plants). Water quality models typically consist of
large sets of non-linear Ordinary Differential Equations
(ODE) and/or Differential-Algebraic Equations (DAE).
These equations are mostly well-behaved, although dis-
continuities occur regularly. The complexity of water
quality models is therefore not in the nature of the equa-
tions, but in the sheer number.



The Tornado kernel attempts to offer a compromise be-
tween the computational efficiency of custom hard-coded
(typically FORTRAN or C) model implementations and
the flexibility of less computationally efficient generic
tools such as MATLAB. In Tornado, hierarchical mod-
els are specified in high-level, declarative, object-oriented
modelling languages such as MSL (Vanhooren et al.,
2003) and Modelica (Fritzson, 2004). From these high-
level specifications, efficient executable code is generated
by a model compiler. Using the executable models gener-
ated by the model compiler, Tornado allows for running
a variety of so-calledvirtual experiments. Virtual experi-
ments are the virtual-world counterpart of real-world ex-
periments, similar to the way models relate to real-world
systems (Kops et al., 1999).

For each type of virtual experiments that is implemented
in Tornado, one or more numerical solver types are
needed. Overall, Tornado includes solvers for integra-
tion of ODE’s and DAE’s, optimization of non-linear sys-
tems, root finding of linear and non-linear systems, ran-
dom number generation, sampling from standard statisti-
cal distributions, and Latin Hypercube Sampling (LHS).

Tornado is portable across platforms and was designed
according to the three-tier principle (Voth et al., 1998).
Implementation was done in C++, using advanced lan-
guage features. Most persistent representations of infor-
mation types are XML-based. The grammar of these rep-
resentations is expressed in XSD (XML Schema Defini-
tion) format and mimics very closely the internal repre-
sentation of the respective types of information.

Several applications (graphical and other) can be built on
top of Tornado. One example includes the next genera-
tion of the WEST® (Vanhooren et al., 2003) modelling
and simulation tool for wastewater treatment plants.

SOLVER AVAILABILITY

Solver codes for most numerical computation tasks are
readily available from literature, lecture notes and on-line
repositories (either public or commercial). A well-known
book on numerical techniques is Press et al., 1992. Ta-
ble 1 lists some of the most popular on-line resources.

Table 1:Popular numerical solver repositories

Repository Description URL

Netlib Network Library http://www.netlib.org

GAMS Guide to Available Math. s/w http://gams.nist.gov

ACM TOMS Transactions on Math. s/w http://www.acm.org/toms

NAG Numerical Algorithms Group http://www.nag.co.uk

EMBEDDING SOLVERS INTO QUALITY
SOFTWARE: INTEGRATION ISSUES

When integrating numerical solvers into quality software
several issues can be encountered, which render this pro-

cess often much less straightforward than integrating the
same solvers into less demanding software such as pro-
totype or research applications. Quality software (either
commercial or non-commercial) is typically subject to a
number of requirements that are related to stability, ex-
tensibility, maintainability and consistency. For instance,
quality software will not allow for application crashes due
to solver failures, nor will it allow for memory to be de-
pleted due to iterative calls to a solver routine that does
not perform proper memory management. One might ar-
gue that in modern software frameworks such as J2EE
and .NET, issues such as these have become irrelevant.
However, numerical computational efficiency is a major
factor in scientific software kernels, and hence modern
frameworks that rely on code interpretation, byte code
compilation and/or garbage collection should preferably
not be used. One will therefore notice that compiled lan-
guages such as FORTRAN, C and C++ remain popular
for the development of scientific software kernels. As
a result, the problem of integrating numerical solutions
in quality software is largely restricted to the world of
C/C++ and FORTRAN.

The following gives a non-exhaustive overview of is-
sues that can be encountered when integrating numerical
solvers into quality software:

• Programming language heterogeneity: A situa-
tion that commonly occurs is that the solver code
that needs to be integrated into the application is
programmed in a language that differs from the
language of the encapsulating application. In prac-
tice this most often proves to be a minor problem.
In case the languages are C and FORTRAN, there
is compatibility at link-level by default, meaning
that compiled objects written in C can call ob-
jects written in FORTRAN andvice versa. How-
ever, one must keep in mind that arrays are stored
row-major in C andcolumn-majorin FORTRAN,
some data transformations may therefore be re-
quired. Also, C++ has no trouble calling C and
FORTRAN. However, in the opposite case com-
patibility is only ensured when the prototypes of
the C++ functions to be called are preceded by the
export ”C” clause.

• Lack of extensibility and maintainability : The
most direct way of integrating solver codes is
through static linkage. Evidently, this implies that
each time a new version of the solver code is to
be integrated, re-linkage is required. Moreover, in
case additional solver codes are to be added, modi-
fications of the application code, recompilation and
re-linkage are required. Clearly, in view of extensi-
bility and maintainability, a mechanism that allows
for solvers to be loaded dynamically is required.

• Function signature heterogeneity: Inevitably,
solvers for different tasks (integration, optimiza-



tion, . . . ) will have different signatures. However,
since solver codes for the same task may have very
different origins, their function signatures are in
practice also very different. In order to allow for
the development of application code that is inde-
pendent of the particular solver that is being used,
an intermediate abstraction layer is required.

• Solver setting heterogeneity: Each solver typi-
cally has a number of configuration options or set-
tings. In the case of integrators, these settings for
instance include stepsizes and tolerances. Solvers
that perform similar tasks may not only have a dif-
ferent number of settings, often settings that have
the same meaning are named differently, or set-
tings with the same name have a somewhat differ-
ent meaning. The confusion that arises from this
should be overcome through the introduction of a
flexible solver setting querying and updating mech-
anism.

• Lack of I/O flexibility : It is very common for
solvers to generate messages during processing.
These messages can be classified as error mes-
sages, warnings and informational messages. Typi-
cally these messages are written directly to the con-
sole (i.e., standard output -stdout). Sometimes a
distinction is made between standard output for in-
formational messages and warnings and standard
error (stderr) for errors. Clearly, this behavior may
be very undesirable when a solver is integrated in
an application, since in this case output may have
to be sent to a log file or a widget that is part of a
GUI (Graphical User Interface).

• Lack of thread-safety: An issue that is nearly al-
ways overlooked by most authors of solver codes
is thread-safety. If one wants to keep all deploy-
ment options of a solver code open, one should not
make any assumptions as to the use of the solver in
a single-threaded or multi-threaded context. This
specifically means that global variables (i.e., COM-
MON blocks in FORTRAN) should not be used.
Solvers that rely on global data will hamper de-
ployment in types of applications such as MDI
(Multiple Document Interface) GUI’s and multi-
threaded computation servers.

• Unappropriate memory management: Numeri-
cal solvers usually refrain from the extensive use
of dynamically allocated memory in order to max-
imize efficiency. However, in case dynamically al-
located memory is used, it should be properly man-
aged and cleaned up upon exit of the solver rou-
tines. In practice, solvers often do not (or only
partly) clean up dynamically allocated memory in
case of solver failures. In applications where a
large number of calls to such a solver occur, de-
pletion of memory is to be expected.

THE TORNADO SOLVER FRAMEWORK

Since Tornado has to deal with various solver types (in
order to support the respective types of virtual experi-
ments), and for each type of solver, multiple solver imple-
mentations need to be available (in order to cover as many
areas of application), a generalized solver framework was
developed. The framework is based on dynamic load-
ing and run-time querying of solver plug-ins (i.e., DLL’s
on Windows and shared objects on Linux). Solver plug-
ins are loaded and registered in an internal data structure
during startup of the application. Afterwards, registered
solvers can be used by one or more virtual experiments,
possibly concurrently. Solver codes contained in plug-
ins are wrapped by an abstraction layer and are equipped
with a data structure that allows for run-time querying
and updating of solver settings. The remainder of this
section gives a more structured description of the imple-
mentation of the Tornado solver framework.

Inheritance hierarchy

Tornado was designed in an object-oriented manner,
which implies that the software is based on classes that
are structured according to an inheritance hierarchy. All
classes are based on one or more abstract interfaces
(Stroustrup, 1997). In order to distinguish implementa-
tion classes from abstract interfaces, the names of imple-
mentation classes are prefixed with a capital ”C”, while
abstract interfaces are prefixed with a capital ”I”. Figure 1
depicts an excerpt from the solver base class inheritance
hierarchy in Tornado. The figure shows that all classes
are derived from an abstract interface. From the most
general solver base class (which only contains two meth-
ods: Reset()andSolve()), other base classes have been
derived that are related to each type of task for which a
solver is required. As the figure is only an except from
the complete hierarchy, only base classes for root find-
ing, integration and optimization are shown. In reality,
Tornado supports a wider variety of solver types.

Figure 1: Solver inheritance hierarchy (excerpt)

The figure also shows thatSolveRoot, SolveIntegand
SolveOptimall contain a method namedConfigure()(next
to some other less important methods that are not shown).
This method configures the solver with pointers to a num-



ber of entities that are required for the operation of the
solver. As an example, Table 2 lists the arguments of this
method for the integrator solver base class. The purpose
of the callback arguments will be explained further in this
section.

Table 2:Arguments of the SolveInteg::Configure() method

Argument Description

CallbackMessage Called when messages are generated

CallbackStop Called to discover if processing is to be stopped

CallbackLicense Called to discover if the solver is licensed

CallbackTime Called when the integration time is incremented

Model Reference to the model to be integrated

Input Reference to the model’s input providers

Output Reference to the model’s output acceptors

Figure 1 also shows that abstract interfaces and base
classes are derived from a class namedProps, which
stands forproperties. This class implements a mecha-
nism for specification and run-time querying of solver
settings and will also be discussed later in this section.

All solvers codes that are to be integrated into Tornado
should be part of the Tornado solver hierarchy (i.e., de-
rived from one of the solver base classes). In most cases
a thin layer of wrapper code as well as some modifica-
tions of the solver code itself are required to this end.

Dynamic loading

Solver implementations derived from the base classes of
the Tornado solver hierarchy are to be wrapped as a dy-
namically loadable object (DLL or shared object) before
they can be loaded into Tornado. In order to allow for this
mechanism to be ported to as many platforms as possible,
simplicity has been favored to the largest extent. In fact,
the only two functions that are expected to be exported
by the dynamically loadable object are the following:

wchar_t* GetID();
void* Create();

The first function should return a string that uniquely
identifies the solver that is contained within the dynami-
cally loadable object. This string should be structured as
follows: Tornado.Solve.<SolverType>.<SolverName>.
For example, in case of a Runge-Kutta 4 solver an identi-
fier such asTornado.Solve.Integ.RK4could be used.

The second function is expected to act as a factory
(Gamma et al., 2003) for solver instances,i.e., when
called it should return a new instance of the solver class.
For reasons of simplicity, the most general pointer type
(void*) is used as a return data type. Evidently, after call-
ing theCreate()method Tornado will apply the appropri-
ate casting.

As mentioned before, Tornado will load solver plug-ins

at startup. The list of plug-ins to be loaded is specified
in the main configuration file for Tornado, which is an
XML document with a predefined grammar. The follow-
ing sample configuration file shows that 6 solvers are to
be loaded (3 integrators, 2 optimizers and 2 root find-
ers). The names mentioned are plug-in files names, which
could be absolute or relative path names (possibly con-
taining environment variables). At the moment a total of
36 solver plug-ins are available for Tornado.

<Tornado>
<Main Version="1.0">

<Props/>
<Plugins>

<Plugin Name="SolveIntegCVODE"/>
<Plugin Name="SolveIntegDASSL"/>
<Plugin Name="SolveIntegRK4"/>
<Plugin Name="SolveOptimPraxis"/>
<Plugin Name="SolveOptimSimplex"/>
<Plugin Name="SolveRootBroyden"/>
<Plugin Name="SolveRootHybrid"/>

</Plugins>
<Units/>

</Main>
</Tornado>

Properties

In Tornado, solver settings (such as tolerances or step-
sizes for integrators) are not manipulated through spe-
cialized method calls, for every solver has its own distinct
settings. A more general system is therefore required to
be able to manipulate solvers in a plug-and-play fashion.
The solution that is implemented by Tornado is based on
a map (or dictionary) of so-calledpropertiesthat is to be
provided by each solver. Each property is a structure that
contains the members listed in Table 3.

Table 3:Property members

Name Type Description

Name wstring Property name

DataType TDataType Boolean, Integer, Real or String

AccessType TAccessType Read-only or Read/Write access

Description wstring Textual description

Default CValue Default value

Range pair<CValue, CValue> Lowerbound and Upperbound

Value CValue Actual value

In reality, the situation is somewhat more complicated
than this, since actual values and meta-information (all
other property members except for the actual value)
are stored separately in Tornado. Figure 2 contains an
informal Entity Relationship (ER) diagram that gives
some more detail. It shows that the properties struc-
ture (CProps) that is associated with a solver consists of
two elements: a map of values (ValueMap) and a list of
meta-information structures (PropsInfo). There is a 1-to-
1 mapping between values and meta-information struc-
tures based on the uniqueness of property names.

Figure 3 contains an informal ER diagram for theCValue



Figure 2: CProps ER diagram

structure. It shows that it contains a specification of the
data type of the value, and a union containing an overlay
of instances of the various possible data types (Boolean,
Integer, Real, String). From this also follows that the in-
clusion of a data type specification inCValueis actually
redundant, as the data type is also stored in the meta-
information that is associated with a property.

Figure 3: CValue ER diagram

One will notice that the meta-information structure con-
tains a range of validity expressed as a lowerbound and
upperbound. Lowerbounds and upperbounds will only
be used in their true sense when the data type is either
Integer or Real. However, in case the data type is set to
String, a special meaning will be attached to the lower-
bound. By assigning it a string composed of sub-strings
separated by semicolons, it can be enforced that the value
of the property can only be set to one of the sub-strings.
No other values will hence be accepted.

Table 4 contains an overview of the properties that
are supported by the CVODE integrator plug-in for
Tornado, which originates from the SUNDIALS suite
(http://www.llnl.gov/CASC/sundials). The first three
properties in this table are read-only. These properties
provide some information on the characteristics of the
solver, which is a first step towards automated solver se-
lection.

Callbacks

In Tornado, solvers interact with their encapsulating ap-
plication through callbacks. In an object-oriented con-
text such as the Tornado framework, callbacks are imple-
mented through abstract interfaces. In this case, these in-
terfaces are to be implemented by the encapsulated appli-
cation and called by the solver when certain events occur.
The idea behind this is that the ultimate decision on how

Table 4:Properties of CVODE integrator

Name Type Access Default Range

ModelTypes S R ODE -

StepSizeType S R Variable -

IsStiffSolver B R true -

MaxNoSteps I R/W 0 0 -∞

AbsoluteTolerance R R/W 1e-7 0 -∞

RelativeTolerance R R/W 1e-7 0 -∞

LinearMultistepMethod S R/W Adams Adams;BDF

IterationMethod S R/W Functional Functional;

Newton

LinearSolver S R/W Dense Dense;Band;

Diag;SPGMR

CVBandUpperBandwidth I R/W 0 0 -∞

CVBandLowerBandwidth I R/W 0 0 -∞

CVSPGMRGSType S R/W ModifiedGS ModifiedGS;

ClassicalGS

to handle a certain event should not be with the solver, but
with the application. The most notable situation in which
callbacks are required occurs when the solvers generates
a message (info, warning or error). The solver should
not directly output this message (e.g., to the console), but
rather pass on the message to the application. The appli-
cation will then take the appropriate action,e.g., display
the message in a text widget or pop up an error dialog
box. Callback interfaces are usually quite simple in Tor-
nado. This is illustrated by the following code fragment
that shows the declaration of the message callback inter-
face.

class ICallbackMessage
{

public:

virtual void
Info(const std::wstring& Message) = 0;

virtual void
Warning(const std::wstring& Message) = 0;

virtual void
Error(const std::wstring& Message) = 0;

};

As is shown in Table 2, integrator solvers can make use
of 4 callbacks in Tornado. Next to the message callback,
there is also a callback for testing if the user has requested
for processing to be aborted. In addition, there are call-
backs for testing if the solver plug-in is appropriately li-
censed and for notifying the application about the incre-
mentation of the integration time. Other types of solvers
(optimizers, root finders, . . . ) will support a different set
of callbacks. A subset of callbacks, consisting of a mes-
sage and stop callback, will however always be present.

Thread-safety

The Tornado kernel has been conceived as a multi-
threaded software system. Most notable example is the



fact that Tornado allows for running multiple virtual ex-
periments concurrently. A necessary condition for this,
is that every virtual experiment has its own local data.
Global experiment-related data is therefore strictly for-
bidden. Consequently, solvers should also refrain from
the use of global data (e.g., COMMON blocks in FOR-
TRAN and global variables in C/C++).

A situation that frequently occurs is that solver codes im-
plemented in FORTRAN have to be integrated in Tor-
nado. As mentioned before, FORTRAN-compiled ob-
jects can be linked to objects with C-linkage. However,
in the case of Tornado another approach has been fol-
lowed, based on the automatic conversion of the origi-
nal FORTRAN code to C through the application of the
well-known f2c tool (http://www.netlib.org/f2c). A for-
tunate result of the use off2c is that FORTRAN COM-
MON blocks are not translated to global C variables, but
to structs. It is possible to create separate instances of
these structs for every experiment instance, hence guar-
anteeing that experiments will use local data only.

Unfortunately, not all solver codes that rely on global
data are implemented in FORTRAN. Situations also oc-
cur where solver codes implemented in C or C++ that rely
on global variables have to be integrated in Tornado. In
this case, two options exist. One can either modify the
code manually in order to replace the global variables by
data that can be instantiated. Depending on the number
of global variables, the amount of manual work involved
may or may not be acceptable. In case it is not accept-
able, another alternative is currently under development
in Tornado. It is based on loading a separate copy of the
plug-in that contains the solver and its global data, for ev-
ery experiment that uses it. Since the address spaces of
dynamically loaded objects are distinct, the use of only
local data is hence again guaranteed. However, there is
of course also a downside to this approach. Loading mul-
tiple copies of the same dynamically loadable object is
much less efficient than creating multiple instances of a
solver contained in a plug-in that is only loaded once.

CONCLUSION

This article touches on the issues that are associated with
the integration of multiple numerical solver codes into
quality software. Through a number of examples and
implementation details it is shown how these problems
have been overcome in the Tornado kernel for modelling
and virtual experimentation. The approach followed in
Tornado is based on the definition of abstract interfaces
and dynamic loading of solver plug-ins, containing meta-
information that can be queried at run-time.

REFERENCES

F. Claeys, D. De Pauw, L. Benedetti, I. Nopens, and P.A. Van-
rolleghem. Tornado: A versatile efficient modelling & vir-
tual experimentation kernel for water quality systems. In
Proceedings of the iEMSs 2006 Conference, Burlington, VT,

2006a,Accepted.

P. Claeys, F. Claeys, and P.A. Vanrolleghem. Intelligent con-
figuration of numerical solvers of environmental ODE/DAE
models using machine-learning techniques. InProceedings
of the iEMSs 2006 Conference, Burlington, VT, 2006b,Ac-
cepted.

P. Fritzson.Principles of Object-Oriented Modeling and Simu-
lation with Modelica 2.1. Wiley-IEEE Press, February 2004.
ISBN 0-471-47163-1.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Pat-
terns. Addison-Wesley, 2003.

S. Kops, H. Vangheluwe, F. Claeys, and P.A. Vanrolleghem. The
process of model building and simulation of ill-defined sys-
tems: Application to wastewater treatment.Mathematical
and Computer Modelling of Dynamical Systems, 5(4):298–
312, 1999.

W.H. Press, S.A. Teukolsky, W.T. Vettering, and B.P. Flan-
nery. Numerical Recipes in C: the art of scientific comput-
ing. Cambridge University Press, New York, NY, 2nd edi-
tion, 1992.

B. Stroustrup. The C++ Programming Language. Addison-
Wesley, 3rd edition, 1997.

H. Vanhooren, J. Meirlaen, Y. Amerlinck, F. Claeys,
H. Vangheluwe, and P.A. Vanrolleghem. WEST: modelling
biological wastewater treatment.Journal of Hydroinformat-
ics, 5(1):27–50, 2003.

G.R. Voth, C. Kindel, and J. Fujioka. Distributed application
development for three-tier architectures: Microsoft on Win-
dows DNA. IEEE Internet Computing, 2(2):41–45, 1998.

AUTHOR BIOGRAPHIES

FILIP H.A. CLAEYS was born in Ghent, Belgium. He re-

ceived a MSc in Computer Science from Ghent University

and a Master’s in Artificial Intelligence from K.U.Leuven. He

currently works as a senior software engineer for HEMMIS

N.V. and leads a research group in the field of modelling and

simulation software tools at Ghent University.

PETER A. VANROLLEGHEM , bio-engineer, PhD, heads

the modelEAU research team at Université Laval (Qúebec)

and has ample experience with modelling, monitoring and

control of wastewater treatment systems. He has over 175

peer-reviewed papers and is very active within the Interna-

tional Water Association.

PETER FRITZSON is head of the Programming Environ-

ment Laboratory at Link̈oping University, Sweden. He holds

the positions of research manager at MathCore Engineering

AB, chairman of the Scandinavian Simulation Society and

vice-chairman of the Modelica Association. He has published

10 books and over 100 scientific papers.


