
Generating efficient executable models for complex
virtual experimentation with the Tornado kernel

Filip H.A. Claeys*, Peter Fritzson** and Peter A. Vanrolleghem*,***

* BIOMATH, Ghent University, Coupure Links 653, B-9000 Gent, Belgium

(E-mail: Filip.Claeys@biomath.ugent.be)

** PELAB, Linköping University, SE-581 83 Linköping, Sweden (E-mail: petfr@ida.liu.se)

*** modelEAU, Pavillon Pouliot, Université Laval, G1K 7P4 Québec, QC, Canada

(E-mail: Peter.Vanrolleghem@modelEAU.org)

Abstract Virtual experimentation is a collective term that includes various model evaluation procedures such

as simulation, optimization and scenario analysis. Given the complexity of the models used in these

procedures, and the number of evaluations that is required to complete them, highly efficient model

implementations are desired. Although water quality management is a domain in which complex virtual

experimentation is often adopted, only relatively little attention has thus far been devoted to the automated

generation of efficient executable models. This article reports on a number of promising results regarding

executable model generation that were obtained in the scope of the Tornado kernel, using techniques such

as equiv substitution and equation lifting.

Keywords Code generation; executable models; model compilers; virtual experimentation

Introduction

In water quality research, the biological and/or chemical quality of water in rivers, sewers

and wastewater treatment plants (WWTP) is studied. Research in this domain is facilitated

by a number of models that have received a formal or de facto standardization status. Most

notable are the River Water Quality Model No.1 (RWQM1) (Reichert et al., 2001) and the

Activated Sludge Model (ASM) series (Henze et al., 2000). Water quality models typically

consist of large sets of non-linear Ordinary Differential Equations (ODE). These equations

are mostly well behaved, although discontinuities do occur. The complexity of water quality

models is therefore not in the nature of the equations, but in the sheer number. In WWTP,

smaller models such as the well known Benchmark Simulation Model No.1 (BSM1) (Copp

et al., 2002) consist of approximately 150 derived variables. Larger systems have up to 1,000

derived variables and over 10,000 (mostly coupled) parameters. On a typical workstation, a

simulation run usually lasts minutes to hours.

Virtual experimentation with water quality models is a complex and computationally inten-

sive process, which frequently requires 100s or 1,000s of simulation runs. A continuous need for

software tools that offer extended functionality and improved performance therefore exists

(Gujer, 2006). An example of a software tool that was recently developed is Tornado (Claeys

et al., 2006a). It manages to substantially improve performance with respect to its predecessors,

and offers a broad range of virtual experiment types to solve various frequently occurring

problems. One factor that strongly influences the execution time of virtual experiments is the

efficiency of the executable models that are being used. Clearly, for small problems highly effi-

cient implementations can be hand-crafted. However, manual coding is not a tractable solution

for larger problems, and is inappropriate in terms of portability and re-usability. Therefore,

approaches in which executable model code is generated automatically on the basis of declarative

W
ater

S
cience

&
T

echno
lo

g
y
V
o
l
5
6
N
o
6
p
p
6
5
–
7
3
Q

IW
A

P
ub

lishing
2

0
0

7

65doi: 10.2166/wst.2007.581

model representations are favored (Muetzelfeldt 2004). Although such mechanisms have been in

use for quite a number of years in water quality research (Vanhooren, 2003), only little attention

has been devoted to the quality of the code generated from these declarative descriptions. This

article therefore focuses on techniques such as equiv substitution and equation lifting, which

have recently been implemented in the scope of the Tornado kernel. These techniques allow for

an increase in efficiency and a reduction in size. The effects are illustrated on a number of

WWTP plant layouts, including BSM1. Since executable model formats are designed for effi-

cient execution rather than human-readability, care must be taken to detect and report run-time

problems in an appropriate way. Two techniques that are helpful in this respect are the automated

generation of bounds checking code, and code instrumentation.

The Tornado kernel

Tornado (Claeys et al. 2006a, 2006b, 2006c, 2006d) is an advanced kernel for modelling

and virtual experimentation that was recently jointly developed by BIOMATH (Ghent

University) and MOSTforWATER NV (Kortrijk, Belgium). Tornado introduces a low level

of overhead during simulations; performance is therefore comparable to completely hand-

crafted solutions. Several APIs are available (native Cþþ , C, .NET, MEX, etc.), which

allow for deployment of the kernel in a variety of software systems. The most prominent

application that is being built on top of the Tornado kernel is the next generation of the

WESTw (Vanhooren, 2003) modelling and simulation tool for WWTPs. The modelling

language that has thus far been used in Tornado is MSL (Model Specification Language)

(Vanhooren, 2003). However, support for Modelica (Fritzson 2004) has recently been intro-

duced as well. Modelica is similar to MSL in the sense that it is high-level, declarative and

object-oriented. As Tornado is merely a kernel (i.e. a set of class libraries) it does not come

with a full-fledged (graphical of other) user interface. However, in order to facilitate testing,

a suite of some 30 command-line tools is included. These tools are surprisingly versatile, and

allow for a clear demonstration of the Tornado concepts. The work discussed in this article

was realized using the Tornado command-line suite only.

Complex virtual experimentation

Tornado consists of strictly separated modelling and virtual experimentation environments.

The experimentation environment allows for running so-called atomic and compound virtual

experiments. The latter are hierarchically structured whereas the first cannot be further

decomposed. Atomic experiment types that are available in Tornado are dynamic simulation

and steady-state analysis. The most straightforward types of compound experiments are

optimization, scenario analysis, Monte Carlo analysis (e.g. with Latin Hypercube Sampling)

and sensitivity analysis. More convoluted types of compound experiments are also available,

such as the computation of aggregated statistical data. Thanks to the object-oriented nature

of Tornado, new virtual experiment types can easily be added.

Efficient executable models

One important aspect of Tornado is its ability to generate efficient executable code from

models implemented in high-level modelling languages. Through these high-level modelling

languages, complex models can be constructed using techniques such as inheritance and

composition. Converting high-level models to executable code is called model compilation,

and typically consists of two phases. During the first phase (front-end), the textual represen-

tation of the high-level model is converted into an internal representation consisting of an

abstract syntax tree (AST) and a symbol table (ST). Subsequently, the AST is manipulated in

order to perform flattening of the model’s inheritance and composition hierarchies. The

resulting representation will consist of only one model with coalesced declaration and

F
.H

.A
.C

laeys
et

al.

66

equation sections, in contrast to the original situation in which a top-level model was built

upon base models through inheritance, and upon sub-models through composition. The

second phase (back-end) of the model compilation process is aimed at the generation of opti-

mized executable code from the flattened model. In Tornado, C was chosen as a target

language, for reasons of efficiency and flexibility (binary C code can be linked to almost any

other type of binary code). The generated C code is compiled by a regular C compiler and

can be dynamically loaded into the Tornado virtual experiment executor.

Historically, the first high-level modelling language that was supported by Tornado

is MSL. Figure 1 (left) shows that MSL input files are processed by the tmsl model

compiler in order to generate executable C code. Next to C code, the compiler also gener-

ates a file containing a representation of the model’s non-flattened, non-computational

meta-information. Included in this information are human-readable names and attributes

of sub-models, parameters and variables. The information is stored in XML format and

is referred to as symbolic model info. The C code generated by tmsl is processed by a

command-line tool named tbuild, in order to generate a dynamically loadable library.

This library is fed into texec, i.e. Tornado’s virtual experiment executor, along with a

description of the experiment to be executed (in XML format, not shown on the figure).

Modelica is a high-level, declarative and equation-based object-oriented language that

has thus far mainly been used for physical system modelling. It is supported by a steadily

growing consortium (cf. Modelica Association (http://www.modelica.org)) and has a number

of properties that make it equally suitable for biological and ecological system modelling.

Modelica is a very complex language from a model compiler point of view. Building a com-

piler that translates Modelica models into a custom executable model format requires sub-

stantial resources. Fortunately, from the two model compiler phases described above, only

the second phase depends on the desired executable model format; the first phase is generic.

One can therefore re-use an already existing model compiler front-end, if so-desired. The

OpenModelica project (http://www.ida.liu.se/ , pelab/modelica/OpenModelica.html) offers

a Modelica compiler (omc - OpenModelica Compiler) that can be used as a front-end to

one’s own back-end. Since this approach allows for a significant reduction of the model com-

piler development time, it was adopted in the scope of Tornado.

The Modelica model compiler back-end that was developed for Tornado was named

mof2t (Claeys et al., 2006b). At this point it only supports a subset of Modelica.

The topmost part of Figure 1 (right) shows that Modelica input files are processed by the

omc front-end in order to generate flattened Modelica output, which is then further

TMSL Front-end

*.msl

MOF2T

*.mof

.c.SymbModel.xml

*.SymbModel.xml *.ExecModel.xml

TBuild

TExec

*.c

SIMULINK

MEX

OMC Front-end

*.mo

*.m

*.dll / *.so *.dll / *.so

TMSL

*.msl

.SymbModel.xml.c

TBuild

TExec

*.dll / *.so

Figure 1 Code generation using the tmsl front-end and back-end (left); and using tmsl, omc and mof2t (right)

F
.H

.A
.C

laeys
et

al.

67

http://www.modelica.org
http://www.ida.liu.se/~pelab/modelica/openmodelica.html
http://www.ida.liu.se/~pelab/modelica/openmodelica.html

processed by mof2t. Since mof2t has a number of features that are not present in the orig-

inal tmsl back-end, joint use of the tmsl front-end and mof2t has been enabled. In this case,

a representation of the tmsl AST is saved in XML format. This type of information is

named executable model info and is passed to mof2t, along with the same type of symbolic

model info as mentioned before. As can be seen from the lower part of Figure 1, mof2t

supports two targets for code generation. For Tornado, C code can be generated and

subsequently converted to a dynamically loadable library with tbuild. However, it is also

possible to generate C code that expresses the flattened model as a MATLAB SIMULINK

S-function. This code is to be further processed by MATLAB’s mex utility in order to

create a dynamically loadable library that can be attached to a SIMULINK user-defined

function block. The sequel of this article will focus on the first type of code generation,

although the principles that will be discussed are also applicable to the second type.

One issue that needs to be clarified before some of the special techniques that are

implemented in mof2t can be discussed, is the nature of the information contained in the

executable C code that is generated. Basically, this C code consists of data containers and

event routines. Data containers are arrays (with standardized names) in which scalar data

items (produced during flattening) are aligned. The following data item types are distin-

guished: Parameters, Independent Variables, Input Variables, Output Variables, Algebraic

Variables and Derived Variables. As the number of data items of complex models can be

very large, these arrays can easily hold 10,000 items or more. Event routines are func-

tions (with standardized names) that perform the actual computations. Hence, these con-

tain the executable counterparts of the declarative equations of the original high-level

model. The most important event routines are: ComputeInitial (computes parameters

and/or initial conditions on the basis of other parameters; is only executed once at the

beginning of each simulation), ComputeState (computes all variables that are needed to

compute the right-hand sides of differential equations; is executed at each minor inte-

gration timepoint), ComputeOutput (computes variables that do not contribute to the state

of the system; is executed at each major integration timepoint), and ComputeFinal (com-

putes variables for which only the final value is required; is only executed once at the

end of each simulation). It is the model compiler back-end’s responsibility to ensure that

the equations in each section are sorted, i.e. that no variable is used before it has been

computed. Figure 2 shows the execution sequence of these routines.

Equiv substitution

As a result of the coupling of sub-models, flattened models will typically contain many

equivs, i.e. equations of type y ¼ x, where y is an input variable and x is an output

variable. Although these equations are trivial, their sheer number can lead to substantial

performance degradation, since they are to be computed at each integration timepoint.

Through symbolic substitution of y by x in all equations, the equation y ¼ x can be

dropped, and superfluous computations can be avoided. The performance gain that can be

accomplished by equiv substitution is determined by two factors: the number of equivs

versus the total number of equations, and the complexity of the non-equiv equations. In

case the number of equivs is high, or the complexity of non-equiv equations is low, equiv

Compute
initial

Compute
output

Compute
final

Compute
output

Compute
state

Compute
output

Major

Minor
t < t_end

Check
bounds

Check
bounds

t = t_end
Check
bounds

Figure 2 Call graph of executable model event routines

F
.H

.A
.C

laeys
et

al.

68

substitution has been shown to lead to a performance increase of 5 to 30%. In case there

are only few equiv equations, or the non-equiv equations are of high complexity (e.g.

containing power operations), the effect will only be marginal. In fact, experiments have

shown that equiv substitution may even lead to slight performance degradation. The

reason for this is that it may restrict the number of optimizations that the C compiler can

perform, resulting in a slight degradation of performance. For this reason, equiv substi-

tution has been made optional in mof2t. It should be noted that irrespective of the effect

on performance, equiv substitution is also useful to reduce the size of executable model

code. Since C compilers have internal limits with regard to the size of the code they are

able to compile, equiv substitution may help to resolve certain problems.

Lifting

In MSL and Modelica users have the ability to distinguish initial equations from state

equations (by placing them either in a so-called initial or state section). In MSL, final

equations can also be specified. At first glance, this information is useful for the model

compiler to place flattened equations in the appropriate event routine. However, it is not

sufficient. First of all, neither MSL nor Modelica allow for equations to be labeled as out-

put equations. Reason for this is that manual discovery of output equations is non-trivial

and error-prone. Secondly, there might be equations that do not vary during the course of a

simulation, but nonetheless have not been identified by the user as initial equations. In

order for these two issues to be overcome, there are two types of lifting (i.e. moving

equations from one section to another) that can be implemented. By inspecting the right-

hand sides of equations in the state section, the equation’s variability can be determined.

Equations of variability 0 only rely on constants and will always yield the same result.

They can therefore be computed at compile-time and be removed from the system.

Equations of variability 1 rely on constants and parameters and will remain constant during

the course of a simulation. They can therefore be lifted from the state section and moved to

the initial section. This procedure is known as lifting of initial equations. The remaining

equations vary during a simulation and are therefore of variability 2. When investigating

the relationships between equations remaining in the state section after lifting of initial

equations, it can be determined which equations actually contribute to the state of the

system and which do not. In order to do this, a dependency graph can be built in which

each node represents an equation. It then suffices to walk through this graph starting at

nodes that represent differential equations. Each node visited in this way is marked. The

nodes that remain unmarked pertain to output equations. These equations can therefore be

lifted from the state section and moved to the output section. This procedure is known as

lifting of output equations. In practice, the number of equations that can be additionally

identified as initial equations by the model compiler is often limited. Lifting of initial

equations will therefore usually not yield significant performance gains. However, the

number of output equations is mostly significant. In addition, these equations tend to be

relatively complex. As a result, the fact that these equations only have to be computed at

major timepoints (instead of at every minor timepoint if they were to remain in the state

section) yields significant performance improvements, e.g. 20%.

Bounds checking

As a result of the various manipulations performed by a model compiler (flattening,

lifting, etc.), the resulting executable code is often not recognizable anymore to the user.

Consequently, care must be taken to detect potential problems at an early stage, and emit

user-friendly warnings or error messages. One way to improve model safety (e.g. in case

of divergence due to numerical problems such as inappropriate integrator tolerance set-

F
.H

.A
.C

laeys
et

al.

69

tings) is to check each variable against its lowerbound and upperbound during the course

of a simulation (both MSL and Modelica allow for bounds to be specified as meta-infor-

mation attributes). A possible way to tackle this issue is by adding a generic bounds

checking module to the simulator engine. This approach however has proven to be prohi-

bitively slow (up to 50% performance degradation), since it requires extensive run-time

querying of model meta-data. Another approach is to have the model compiler generate

specific bounds checking code for the model at hand. This approach allows for several

optimizations, since lowerbounds set to 2 1 and upperbounds set to 1 do not need to

be checked, hence no code needs to be generated. The event routine that performs bounds

checking was named CheckBounds and is called at every major integration timepoint, as

can be seen from Figure 2. There are several possible ways to handle a bounds violation.

One possibility is simply to halt execution, i.e. stop the simulation and emit an error

message. Another possibility is to continue the simulation by setting the variable to the

value of the bound that was exceeded. In this way the assumed biological behavior can

be mimicked. A third alternative is to emit a warning message and continue the simu-

lation with the variable value in exceedance. In case of the latter, a flag is to be main-

tained that indicates the bounds violation state, in order to avoid the same message to be

issued multiple times. Tests have shown that automatically generated bounds checking

code typically only incurs a performance degradation of about 5%, which is 10 times less

than performing bounds checking through the simulator.

Code instrumentation

Mathematical expressions frequently contain operations that are only defined within a cer-

tain domain with respect to their arguments. A division for instance should not have zero

as a denominator. A power operation such as x^y is not defined when x is negative and y

is not an integral value. The problem with complex models is that in case a division-by-

zero or other domain error occurs, it is very difficult to track down where this problem

originates. At best, execution will be halted and one will receive an error message indicat-

ing that a domain error has occurred at a certain simulation timepoint. What one would

like to see however, is a human-readable representation of the expression that has

triggered the run-time error. This can be accomplished by performing code instrumenta-

tion, i.e. replacing potentially hazardous operations by macros (preprocessor defines). In

these macros, the arguments that might lead to problems are first checked against their

domain of validity. In the absence of problems, the original operation is performed. In

case of a problem however, a meaningful message is issued that is constructed on the

basis of a human-readable representation of the expression in which the operation occurs.

This representation (or rather a reference to it) is passed as an additional argument to the

macro. Table 1 gives an overview of a number of operations that have limited domains of

validity for their arguments. The table also lists the macros that are generated by

the model compiler as a replacement. Finally, the table shows the implementation of the

Table 1 Code Instrumentations

Original Replacement Implementation

x/y _DIV_(x, y, StringID) y ¼ ¼ 0 ? DivisionByZero(StringID): x/y
acos(x) _ACOS_(x, StringID) (x , 21) k (x . 1) ? DomainError(StringID): acos(x)
asin(x) _ASIN_(x, StringID) (x , 21) k (x . 1) ? DomainError(StringID): asin(x)
log(x) _LOG_(x, StringID) x , ¼ 0 ? DomainError(StringID): log(x)
log10(x) _LOG10_(x, StringID) x , ¼ 0 ? DomainError(StringID): log10(x)
pow(x) _POW_(x, y, StringID) (x , 0) && ((y - (int)y) ! ¼ 0) ? DomainError(StringID): pow(x, y)
sqrt(x) _SQRT_(x, StringID) x , 0 ? DomainError(StringID): sqrt(x)

F
.H

.A
.C

laeys
et

al.

70

various macros. Since the executable model code is generated by the model compiler

from its internal AST, it is no problem also to generate the necessary human-readable

expression representations. The reason why references (IDs) are passed to the macros

(rather than the expression strings themselves) is related to the compilation process of the

generated C code. With several C compilers, the compilation process is severely slowed

down when string literals occur in function calls. It is therefore better to store all strings

in a lookup table and pass a reference to a location in this table to each function.

Results

Table 2 contains various results that were obtained by applying the above-mentioned techniques

to a number of cases. In the ASU case, a WWTP with alternating aeration is studied. The acti-

vated sludge basin is modelled with one completely mixed reactor. BSM1_OL (OL stands for

“open loop”; CL stands for “closed loop”), i.e. the Benchmark Simulation Model No.1, is a

standardized simulation environment defining a plant layout, a simulation model, influent loads,

test procedures and evaluation criteria. In the BSM1_CL case, a basic control strategy is

proposed to test the benchmark: its aim is to control the dissolved oxygen level in the final

compartment of the reactor by manipulation of the oxygen transfer coefficient, and to control

the nitrate level in the last anoxic compartment by manipulation of the internal recycle flow

rate. The Orbal plant achieves biological nutrient removal and is modelled using nitrate,

oxygen, ammonium, nitrogen and phosphate measurements for calibration. An Orbal plant is a

type of extended aeration activated sludge plant, which claims to achieve simultaneous

nitrification and denitrification in a single reactor, offering reduced costs. The Galindo_OL

WWTP is designed for C and N removal and is divided into six identical lines, which have two

alternative configurations: Regeneration-Denitrification-Nitrification (RDN) and Denitrification-

Regeneration-Denitrification-Nitrification (DRDN). Finally, the Galindo_CL WWTP is

modelled with oxygen control by means of a PI controller.

All models were implemented in MSL and subsequently processed by the tmsl front-

end and mof2t. Tests were run on the Windows platform using a reference machine (Intel

Pentium M 1,600MHz; 512Mb RAM). As a C compiler, Microsoft Visual Cþþ7.1 was

used. Items 1–7 provide information on the simulation experiment’s integration solver

settings, simulation time horizon and input provider and output acceptor settings. Each

of these has an effect on the speed of simulation. Items 8–11 provide insight in the

complexity of the model. Items 12–14 and 15–17 give the number of initial, state and

output equations, respectively at the beginning and the end of mof2t’s processing. In gen-

eral, only few additional equations can be moved from the state to the initial section.

However, the number of output equations is mostly substantial. In each case, the follow-

ing relations hold: #Finalstart ¼ #Finalend; #Outputstart ¼ 0; #Initialstart þ #Statestart -

#Equiv ¼ #Initialend þ #Stateend þ #Outputend. Items 18–19 provide some infor-

mation on the size of the executable model code (after C compilation, without bounds

checking nor code instrumentation). Items 20–22 respectively give the simulation time of

non-optimized code (with equiv substitution and lifting disabled), the simulation time of

optimized code (with equiv substitution and lifting enabled), and the speedup of the opti-

mized code versus the non-optimized code. Items 23–25 respectively give the simulation

time of optimized code with bounds checking enabled, the simulation time of optimized

code with bounds checking and code instrumented enabled, and the speedup of code with

both safety measures enabled versus non-optimized code without safety measures. It can

be seen that “safe” optimized code is slower than code without any mof2t processing, but

the slowdown is compensated to some extent by the types of optimization that were intro-

duced. The overall slowdown therefore remains limited to a maximum of approximately

25%. Finally, items 26–27 provide a comparison with the simulation speed of the same

F
.H

.A
.C

laeys
et

al.

71

Table 2 Results of the application of mof2t to various WWTP models

ASU BSM1_OL BSM1_CL Orbal Galindo_OL Galindo_CL

1 Integration Solver RK4 RK45 RK45 RK45 RK45 RK45
2 Stepsize/tolerance 1e-4 1e-6 1e-6 1e-6 1e-5 1e-5
3 Simulation time horizon 7d 28d 28d 25d 400d 400d
4 Output file communication interval 0.01d 15 min 15 min 0.01d 15 min 15 min
5 Number of quantities sent to output file 28 43 45 23 27 28
6 Input interpolation No Yes Yes Yes No No
7 Output interpolation No No No No No No

8 Number of nodes in AST 38,883 64,328 64,491 241,955 250,448 262,217
9 Number of unused quantities 118 129 155 243 278 373
10 Number of equivs 172 219 253 623 489 614
11 Number of differential equations 30 178 110 250 270 275

12 Number of initial equations at start 148 170 175 2,433 1,410 1,405
13 Number of state equations at start 722 1,289 1,331 3,551 3,600 3,953
14 Number of output equations at start 0 0 0 0 0 0

15 Number of initial equations at end 149 171 176 2,434 1,553 1,408
16 Number of state equations at end 418 929 943 2,137 2,630 2,998
17 Number of output equations at end 131 140 134 790 338 338

18 Size of executable model DLL (unsafe optimized code) 36 kB 72 kB 92 kB 276 kB 248 kB 252 kB
19 Size of symbolic model XML (unsafe optimized code) 323 kB 551 kB 560 kB 2,604 kB 2,315 kB 2,402 kB

20 Simulation time of non-optimized code 5 s 15 s 48 s 110 s 315 s 465%
21 Simulation time of optimized code 4.5 s 14 s 43 s 86 s 220 s 426%
22 Speedup of unsafe optimized code vs. unsafe non-optimized code þ10% þ7% þ10% þ22% þ30% þ8%

23 Simulation time of optimized code with bounds checking 5 s 14 s 45 s 94 s 235 s 454 s
24 Simulation time of optimized code with bounds checking and instrumentation 5 s 16 s 48 s 106 s 296 s 518 s
25 Speedup of safe optimized code vs. unsafe non-optimized code 20% 214% 27% 213% 226% 214%

26 Simulation time of partially safe non-optimized WESTw-3 code 8.5 s 40 s 112 s 687 s 1,531 s 2,261 s
27 Speedup of safe optimized Tornado code vs. WESTw-3 code þ41% þ60% þ57% þ85% þ81% þ77%

F.H.A.Claeysetal.7
2

cases implemented in WESTw-3, a simulation tool that is currently commercially avail-

able. The WESTw-3 model compiler does not offer equiv substitution, lifting, bounds

checking nor code instrumentation. However, bounds checking is available through the

WESTw-3 simulation engine (hence the reference to “partially unsafe non-optimized

code” in the table). In all cases, mof2t-optimized code with both safety measures

switched on and simulated through the Tornado engine, is substantially faster than the

same model simulated in a less safe manner in WESTw-3. For large models, the speedup

of Tornado is more pronounced than for small models.

Conclusions and future work

As a result of Tornado’s low overhead level and the techniques that were recently

implemented in the mof2t model compiler back-end, complex models can now be simu-

lated several times faster and with a higher safety level than through simulation tools

commercially available. Moreover, since mof2t can be used in unison with tmsl and omc,

the features offered by mof2t can be applied to MSL as well as to (a subset of) Modelica

models. Future work will focus on other types of symbolic model manipulations, such as

symbolic differentiation, reduction of expressions to a canonical form, and static verifica-

tion of units. As these techniques are intended to be implemented in mof2t, they will be

applicable to MSL as well as Modelica models.

Acknowledgements

Peter A. Vanrolleghem is Canada Research Chair in Water Quality Modelling.

References
Claeys, F., De Pauw, D., Benedetti, L., Nopens, I. and Vanrolleghem, P. (2006a). Tornado: A versatile

efficient modelling and virtual experimentation kernel for water quality systems. Proc. 2006 iEMSs

Conference. Burlington, VT.

Claeys, F., Fritzson, P. and Vanrolleghem, P.A. (2006b). Using Modelica models for complex virtual

experimentation with the Tornado kernel. Proc. 2006 Modelica Conference. Vienna, Austria.

Claeys, F., Vanrolleghem, P.A. and Fritzson, P. (2006c). Boosting the efficiency of compound virtual

experiments through a priori exploration of the solver setting space. Proc. 2006 EMSS Conference.

Barcelona, Spain.

Claeys, F., Vanrolleghem, P.A. and Fritzson, P. (2006d). A generalized framework for abstraction and

dynamic loading of numerical solvers. Proc. 2006 EMSS Conference. Barcelona, Sspain.

Copp, J.B. (ed.) (2002). The COST simulation benchmark – description and simulator manual ISBN 92-894-

1658-0, Office for Official Publications of the European Communities, Luxembourg.

Fritzson, P. (2004). Principles of Object-Oriented Modeling and Simulation with Modelica. Wiley-IEEE

Press. ISBN, 0–471-47163-1.

Gujer, W. (2006). Activated sludge modelling: past, present and future. Water, Science and Technology.,

53(3), 111–119.

Henze, M., Gujer, W., Mino, T. and van Loosdrecht, M. (2000) Activated Sludge Models ASM1, ASM2,

ASM2D and ASM3, (Scientific and Technical Report No. 9), IWA Publishing, London.

Muetzelfeldt, R. (2004). Position paper on declarative modelling in ecological and environmental research.

In: European Commission, Directorate-General for Research, EUR(20918).

Reichert, P., Borchardt, D., Henze, M., Rarch, W., Shanahar, P., Somlyody, L. and Vanrolleghem, P.A. (2001).

River Water Quality Model No. 1. (Scientific and Technical Report No. 12), IWA Publishing, London.

Vanhooren, H., Meirlaen, J., Amerlinck, Y., Claeys, F., Vangheluwe, H. and Vanrolleghem, P.A. (2003).

WEST: modelling biological wastewater treatment. Journal of Hydroinformatics., 5(1), 27–50.

F
.H

.A
.C

laeys
et

al.

73

	Generating efficient executable models for complex virtual experimentation with the Tornado kernel
	Introduction
	The Tornado kernel
	Complex virtual experimentation
	Efficient executable models
	Equiv substitution
	Lifting
	Bounds checking
	Code instrumentation

	Results
	Conclusions and future work
	Acknowledgements
	References

