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Abstract Many systems contain populations of individuals. Often, they are regarded as a lumped phase,

which might, for some applications, lead to inadequate model predictive power. An alternative framework,

Population Balance Models, has been used here to describe such a system, activated sludge flocculation in

which particle size is the property one wants to model. An important problem to solve in population balance

modelling is to determine the model structure that adequately describes experimentally obtained data on for

instance, the time evolution of the floc size distribution. In this contribution, an alternative method based on

solving the inverse problem is used to recover the model structure from the data. In this respect, the

presence of similarity in the data simplifies the problem significantly. Similarity was found and the inverse

problem could be solved. A forward simulation then confirmed the quality of the model structure to describe

the experimental data.
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Introduction

Mathematical modelling of wastewater treatment plants has reached a level of maturity

that allows these models to be applied to solve a wide range of problems (design, oper-

ation, control,…). However, looking at the complexity of the models for the different pro-

cess units, it is still apparent that the models used for secondary clarification are

considerably simpler than the ones used for the biodegradation processes. The latter is

not really an issue when the clarifier is built sufficiently large and does not cause any pro-

blem for the overall plant performance. However, when one wants to exploit the full

capacity of the clarifier (i.e. pushing it to its limits) these simple clarifier models become

useless as they are too far off from reality and will lead to too optimistic predictions of

performance.

In the last decade, a lot of knowledge about the hydrodynamics has been gained by

means of Computational Fluid Dynamics (CFD) (McCorquodale et al., 1991; Krebs et al.,

1996; Lakehal et al., 1999; De Clercq et al., 2007). This has already led to better design

of clarifiers (e.g. modified inlet structures, baffles,…). However, for an even better per-

formance of clarifier models, the flocculation of the activated sludge flocs and the poss-

ible handles to interact with that process should be better understood.

Many environments contain populations of individuals. These individuals can be of all

kind, e.g. sludge flocs in wastewater treatment systems, rivers and estuaries, or particles

in sewer systems, to name but a few. These populations are mostly treated as lumped

entities exhibiting mean properties (e.g. sludge concentration in ASM models). However,

for some applications this approach is too rough leading to inaccurate model predictions.
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Hence, a special modelling framework is needed for this type of applications: Population

Balance Models (PBM). The so-called segregated models that are used in this PBM fra-

mework have been around for quite some time (Hulburt and Katz, 1964), mainly in

chemical engineering. However, due to their intensive calculation requirements they have

not been used extensively until roughly 2 decades ago.

Recently, however, the PBM-framework has found its way to biological systems as

well (Biggs and Lant, 2002; Nopens et al., 2002). The main challenge for their successful

application has been to retrieve the correct model structure within the PBM framework

because the functions that have been used so far in other fields to describe the discrete

events in flocculation such as aggregation and breakage seem not to be valid (Nopens

et al., 2005). In this contribution, an alternative procedure based on solving the inverse

problem is applied in order to recover the model structure from experimental data. The

procedure is applied to an aggregating activated sludge. Prior to this, typical flocculation

experiments and the general PBM framework are introduced.

Flocculation experiments

Several attempts have been made in literature to study activated sludge flocculation.

Biggs and Lant (2002) was the first to obtain on-line experimental data of activated

sludge flocculation. They used a 1L mixed vessel filled with diluted activated sludge and

pumped this through a laser diffraction device (Malvern Mastersizer, Malvern, UK)

allowing retrieval of quantitative information about the flocculation process. The online

nature of these experiments allowed Floc Size Distributions (FSD) to be collected with a

frequency of approximately 1 per minute. Experiments were conducted at different levels

of shear intensity and calcium additions. A mass mean diameter (D[4,3] calculated from

the 4th and 3rd integral moments of the FSD) can be used to illustrate the dynamics of the

FSD (Biggs and Lant, 2002; Govoreanu, 2004). The results of a typical (de)flocculation

experiment are shown in Figure 1. It is clear that the average floc size changes drastically

under different regimes of shear. The frequency of the data allows for mathematical mod-

elling of the activated sludge process. The experimental period between 2000 s and

4000 s is used in this contribution. It describes the flocculation from a deflocculated

sludge (developed under a high shear intensity of G ¼ 113s21) at a decreased shear

Figure 1 Results from a typical (de)flocculation experiment in terms of D[4.3] versus time (after Biggs and

Lant, 2002)
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intensity of G ¼ 19.4s21. Such flocculation may actually occur when sludge moves

between different shear zones in a wastewater treatment plant.

Population balance framework

The first literature report of the general framework of population balances was by Hulburt

and Katz (1964). An excellent review of the state-of-the-art in population balances can

be found in Ramkrishna (2000). PBMs have been widely applied to describe processes

involving dynamical behaviour of population properties. Applications can be found in

different scientific areas such as crystallisation (Randolph and Larson, 1971), flocculation

of inorganic dispersed systems (Spicer and Pratsinis, 1996), polymerisation (Blatz and

Tobolsky, 1945), precipitation (Manjunath et al., 1994), flotation (Haarhof and Edzwald,

2001), granulation (Iveson, 2002), cell culture dynamics (Mantzaris et al., 1999) and

aerosol dynamics (Hidy and Brock, 1970), to name but a few. Depending on the number

of properties being described by the model, a PBM can be categorized as either one- or

multidimensional. The general format of a one-dimensional number-based PBM looks

like (Hulburt and Katz, 1964; Ramkrishna, 2000):

›f ðx; tÞ

›t
þ

›

›x
ð _Xðx; tÞf ðx; tÞÞ ¼ hðx; tÞ ð1Þ

where x is a property of the individuals, f(x,t) is the number-based property distribution

function (#.cm23), _Xðx; tÞ is the time derivative of the property x (s 21) and h(x,t) the net

aggregation rate (#.cm23.s21). The right-hand-side of Equation 1 often contains integral

functions of f(x,t) describing aggregation and/or breakage processes, turning it into an

integro-differential equation which is hard to solve analytically. Alternative techniques to

solve this type of equations are summarised in Ramkrishna (2000).

In the particular application of the aggregation part of activated sludge flocculation, x

was chosen to be the particle size and h(x,t) consists of 2 processes: aggregation birth

(AB) and aggregation death (AD). Indeed a particle of size x can both be formed and dis-

appear through aggregation. Aggregation models are often based on the Smoluchowski

model (Thomas et al., 1999; Ramkrishna, 2000):

hðx; tÞagg ¼
1

2

ðx
0

aðx2 x0; x0Þf ðx2 x0; tÞf ðx0; tÞdx0 2 f ðx; tÞ

ð1
0

aðx; x0Þf ðx0; tÞdx0 ð2Þ

where a(x, x0)(cm3.#-1s21) is the collision frequency for particles of volume x (cm3) and x0

(cm3). However, Nopens et al. (2005) showed that the expressions found in the literature

to describe these phenomena (also called kernels) did not perform well when confronting

the model predictions with experimental data.

The inverse problem for aggregation

An alternative way of retrieving the kernels based on experimental data is to solve the

inverse problem (Wright and Ramkrishna, 1992; Sathyagal et al., 1995). The different

steps of this process are depicted in Figure 2.

The idea behind a similarity analysis is to look for a collapsing solution in the

dynamic part of the experimental data, i.e. one looks for a function that allows to trans-

form the set of experimental distributions collected at different time instants into a set of

distributions that collapse onto a single distribution. This collapsing solution allows to

rewrite the PBM in a simpler form, which considerably simplifies the solution of the

inverse problem. In an aggregating context, Wright and Ramkrishna (1992) showed that

this practically means that a scaling function h(t), given by the ratio of two successive
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integral moments m of the number density function f1(x, t),

hðtÞ ¼
mkþ1ðtÞ

mkðtÞ
¼

Ð1
0
xkþ1f 1ðx; tÞdxÐ1

0
xkf 1ðx; tÞdx

ð3Þ

is computed and is used to rescale the particle volume distribution into the similarity vari-

able

h ;
x

hðtÞ
ð4Þ

Since the cumulative distribution F(x,t) is itself a candidate for the self-similar sol-

ution, this distribution is rescaled and a k-value is looked for that makes all distributions

collapse onto one single distribution, the self-similar distribution. The process of deter-

mining k proceeds through trial and error.

The next step to solve the inverse problem (Figure 2) is to redefine the PBM in terms

of the similarity variable as shown by Wright and Ramkrishna (1992):

hF0ðhÞ ¼

ðh
0

dh0F0ðh0Þ

ð1
h2h0

dh00 F
0ðh00Þ

h00

aðh0;h00Þ

ah i
ð5Þ

Here, a(h0,h00)/kal is the unknown function that needs to be reconstructed. It rep-

resents the scaled aggregation frequency divided by the mean scaled aggregation

frequency.

At this moment, a constrained quadratic minimisation problem can be formulated. The

similarity coordinate is discretised into a set of {hi} and a(h0, h00) is expanded in terms

Figure 2 Schematic overview of the steps related to the inverse problem solution
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of basis functions

aðh0;h00Þ

ah i
¼

Xnb
j¼1

ajAjðh
0;h00Þ ð6Þ

A matrix Xi,j is formulated

Xi;j ¼

ðhi
0

dh0F0ðh0Þ

ð1
hi2h0

dh00 F
0ðh00Þ

h00
Ajðh

0;h00Þ ð7Þ

which results in the following quadratic minimisation problem:

minðaT ðXTX þ lregDÞa2 2aTXTg ð8Þ

that allows to obtain the unknown vector a. To cure for the ill-posedness of the problem

Tikhonov regularisation (lreg) is included in the minimisation (Wright and Ramkrishna

1992).

The constraints that are used are physical constraints derived from the definition of

the aggregation frequency: (1) the aggregation frequency is a symmetric function of its

arguments, and (2) the aggregation frequency is positive everywhere.

An interesting set of basis functions that can be used for this kind of inversion pro-

blem are so-called Laguerre polynomials, given by:

LnðxÞ ¼
Xn
m¼0

ð21Þm
n!

ðn2 mÞ!m!2
xm ð9Þ

In order to simplify the matrix equations for the determination of a, as introduced

above, a straightforward method is needed for the representation of the similarity distri-

bution F0(h0) (note that this is the derivative of the cumulative similarity distribution

F0(h0)). Other advantages of the fitting of the similarity curve lie in the limitation of

experimental error and the guarantee that the similarity distribution is continuous. The

mathematical expression that is fitted to the distribution should exhibit analogous qualitat-

ive and quantitative behaviour of the self-similar distributions. A linear combination of

distributions exhibits that behaviour, since g-distributions have the ability to be singular

at the origin, but also can show small h-behaviour falling back toward the origin (two

different types of behaviour that have been observed in similarity distributions of known

aggregation kernels in practice). The expansion of the similarity distribution in terms of

g-distributions is:

F0ðhÞ ¼
Xnterm

k¼1

Akh
ak21expð2bkhÞ ð10Þ

where nterm is the number of g-distributions used in the expansion and Ak, ak and bk are

parameters of the k th g-distribution.

Since an analytical form is available for F0(h0), certain simplifications of the matrix

equations can be accomplished. Equation 7 can be rewritten as

�XijðmÞ ¼

ðhm

0

dh0F0ðh0ÞLiðh
0Þ �Yjðhm 2 h0Þ ð11Þ
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where hm is a point of discretisation and is �Yjðhm 2 h0Þ defined by

�Yjðhm 2 h0Þ ¼

ð1
hi2h0

dh00 F
0ðh00Þ

h00
Ljðh

00Þ ð12Þ

Results and discussion

The data used in this exercise were obtained from dynamic experiments in a 10 L flocculator.

The floc size distributions were measured using a Malvern Mastersizer (Malvern, UK),

a technique based on forward laser scattering. A thorough description of the experiments can

be found in Govoreanu et al. (2004).

First, a similarity analysis was performed on a dataset of aggregating activated sludge

that was sonicated prior to aggregation. However, no collapsing distribution could be

obtained for any value of k that was tested. However, a value of k and, hence, similarity

could be found for an aggregating experiment where the flocs were broken through an

increased shear intensity. The initial and collapsed cumulative distributions are given in

Figure 3 and Figure 4 respectively. The optimal k-value was found to be 20.35. Another

experiment conducted under the same conditions confirmed this similarity, albeit for a

slightly different k-value (20.3). The fact that this similarity did not exist for the case

where sonication was applied prior to flocculation suggests that a different kind of aggre-

gation is taking place, i.e. a different expression will be needed to describe this type of

reflocculation after sonication. Since sonication does not occur in the real activated

sludge process, it can be concluded that lab experiments studying flocculation starting

from a sonicated sludge will not lead to the extraction of the correct flocculation beha-

viour (i.e. aggregation kernel), and the results obtained cannot be extrapolated to the full-

scale case.

In a next step an analytical description of the similarity distribution is needed so as to

simplify the inverse problem solution. In this case 2 g-distributions were found appropri-

ate to describe the similarity distribution (not shown).

Finally, the inverse problem was solved by computing the left-hand side of Equation 5

at each discrete value of the similarity variable. The goal of inversion is to reproduce this

left-hand side with a linear combination of double integrals present at the right-hand side

of the PBE for different combinations of Laguerre polynomials. This is done at all discre-

tised values of the similarity variable. The number of Laguerre polynomials (nb) was

Figure 3 Time evolution of the cumulative distribution for the flocculation experiment at a shear intensity of

G ¼ 19.4 s21 starting from a deflocculated sludge through increased shear intensity
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varied from 2-4. It was concluded that nb ¼ 4 was the best choice (results not shown).

However, it might not be necessary to pursue such high accuracy of the approximation.

The danger of using the sum of squared errors (SSE) as only criterion to base the choice

on might be that one starts to fit experimental noise, which is not in our interest. Regular-

isation (Equation 8) did not affect coefficient values for lreg , 1. From the inverse sol-

ution, the vector a representing the weighting factors of the basis function expansion was

obtained. It could then be used to reconstruct the aggregation kernel (results not shown).

Finally, the quality of the inversion is checked. This can be done by performing a for-

ward simulation, i.e. simulating the model using the obtained kernel structure. In order to

do so, the scaled aggregation frequency needs to be converted to the unscaled one. The

results for the forward simulation were found to be in best agreement with the data for a

regularisation factor of 1. Results are depicted in Figure 5 and show good description for

the entire distribution dynamics, including the peak and tails.

Figure 4 Cumulative distributions versus the similarity variable h for k ¼ 20.35

Figure 5 Forward simulation using the unscaled aggregation frequency recovered through inversion using

4 basis functions per axis, lreg ¼ 1
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Conclusions

A segregated modelling framework was adopted enabling to describe the evolution of dis-

tributed properties of populations. In search for an adequate model structure, an inverse

solution methodology was successfully applied for the first time for a biological system.

Similarity was found for aggregating sludge that was disrupted through excess shear. The

latter was not the case for sonicated sludge, proving that the model and, hence, the floc-

culation process is different and might not be an adequate method to study activated

sludge in a real treatment plant. The aggregation kernel was recovered and its quality

proven by means of a forward simulation resulting in an adequate description of the dis-

tribution dynamics during activated sludge flocculation.
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