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In this paper, we propose a statistical theoretical framework for incorporation of sensor and

actuator faults in dynamic simulations of wastewater treatment operation. Sensor and actuator

faults and failures are often neglected in simulations for control strategy development and

testing, although it is well known that they represent a significant obstacle for realising control at

full-scale facilities. The framework for incorporating faults and failures is based on Markov chains

and displays the appealing property of easy transition of sensor and actuator history into a model

for fault generation. The paper briefly describes Markov theory and how this is used together

with models for sensor and actuator dynamics to achieve a realistic simulation of measurements

and actuators.
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INTRODUCTION

The interest in using dynamic simulation models to test,

verify and benchmark control strategies in wastewater

treatment operation has put focus on the realism of the

models used. Concerns about whether the models represent

the true behaviour of the process have been raised as long as

there have been models around. However, these concerns

have mostly aimed at the process description and the

models’ ability to correctly describe the physical, chemical

and biological mechanisms of the process. When control

aspects are studied in a simulation environment, other

issues related to realism also become important. In control,

good online measurements are vital. In a simulation

environment, this does not pose a problem but in real

applications, the quality of the online measurement is

perhaps the largest obstacle between failure and success.

Although most researchers and practitioners agree with this

statement, surprisingly little attention has been given the

task to describe sensors and actuators in a realistic manner

(with some exceptions). Rieger et al. (2003) proposed

classification of sensors of different types depending on

the measurement mechanism and also provided models for

the different classes. Some reports on models of actuators

exist, mainly focusing on the aeration system (Alex et al.

2002; Rieger et al. 2006). However, not many reports can be

found where models also take faults and failures into

account. Faults and failures are very detrimental to

performance of a control system and in order to apply

control, often much more time has to be spent on the “safety

net” around the control system than on the actual control

loops and strategies.

In this paper, we propose a framework for incorpo-

rating faults and failures of sensors and actuators in the

simulation of wastewater treatment plants. The work

presented here is a part of the development of BSM1

(Copp 2002) into a new set of benchmark simulation

models, the BSM1_LT (Rosen et al. 2004) and BSM2

( Jeppsson et al. 2006), initiated by the IWA Task Group on

Benchmarking of Control Strategies for Wastewater Treat-

ment Plants. The final goal is to have a model that

stimulates control engineers to come up with innovative

and efficient control strategies for wastewater treatment

operation. However, to be successful in reality, control
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strategies also need to be reliable and robust. By adding

more realism to the simulations, the step from simulation to

reality ought to be somewhat shorter and easier.

The BSM1 has also been used as a data source. Data

produced by the models have been used for various studies.

One interesting use of this data is process monitoring. The

BSM1_LT is therefore also aiming at providing a platform

for benchmarking process monitoring approaches and

algorithms. Also for this use, the realism of the simulated

measurements is crucial to fully challenge the monitoring

approach and to facilitate the move from a research product

to real use at the treatment facilities.

SENSOR AND ACTUATOR FAULT MODELLING

The occurrence of a fault in a sensor or actuator is depending

on many different factors of which some are deterministic

and some are stochastic. It would be too complex to model

all factors that influence the time, appearance and magni-

tude for a fault. A simplistic option to incorporate faults and

failures in simulations would be to manually impose faults at

desired locations during the simulation period. A problem

with this approach, apart from it being quite cumbersome, is

the difficulty to obtain a disturbance and fault distribution

that truly is behaving according to what is observed in

reality. An approach that is often seen in various industrial

applications is to treat the occurrence of faults using a

model. In most of this contribution, we refer to the sensor as

the object of modelling. However, the procedure to model

an actuator is identical.

The fault model

Markov chains are often used to model failures in industrial

simulations (Olsson & Rosen 2005). A Markov chain con-

tains a number of different states (si) between which the

system switches according to certain transition probabilities.

The transition probability to switch from si to sj at time

instance k is:

Pij ¼ P½sjðkÞjsiðk2 1Þ� ð1Þ

In the simplest form, a sensor (or actuator) is modelled

having two states. One state (s1) represents a fully

functional sensor and the other state (s2) represents any

sensor fault. A Markov chain for this problem is depicted

in Figure 1. In this case, the transition probability p12

defines the probability for a fault at any given time

instance given that the sensor is functioning. The proba-

bility p11 defines the probability that the sensor will remain

functioning as is, naturally, p11 ¼ (1 – p12). Conversely,

p21 defines the probability that the sensor will be repaired

(or replaced) and p22 defines the probability that the

sensor will remain broken.

More generally, a Markov chain is described by its

probability matrix P, which is written as:

P ¼

p11 p12 · · · p1m

p21 p22 · · · p2m

..

. ..
. . .

. ..
.

pm1 pm2 · · · pmm

2
66666664

3
77777775

ð2Þ

with the condition that 0 # pij # 1 and that the sum of

each row equals 1. If we define a row vector p for the

probability distribution we can write p(k þ 1) ¼ p(k)P,

where k is the time instance. A Markov chain is, thus,

characterized by having no memory. All the history of

the system is stored in the present state. Now, assume

an initial condition p(0) (for instance that the sensor

or actuator is functioning). We can then write the

probability distribution for any given time instance n as

p(n) ¼ p(0)Pn. If the Markov chain is said to be ergodic,

there exists a stationary solution pp independent of the

initial conditions. This means that it is possible to find a

solution which describes the modelled system on an

average. This is useful since it is then possible to determine

the transition probabilities of P based on knowledge on

the failure history of a certain sensor or sensor type.

Figure 1 | A Markov chain with two states.
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For instance, if on an average the sensor is working

properly for 95% of the time, failing for 2% and is in

calibration for the remaining 3% of the time, we want the

model to produce the same result. For a small system like

this, trial and error in determining the transition probabi-

lities of P would suffice. However, as soon as the modelled

system gets only slightly bigger and states have more

than one entry path and/or exit path, it is quite difficult to

guess the transition probabilities. By setting the desired

stationary solution (e.g. pp ¼ [0.95 0.02 0.03] from the

example above) and solving the equation:

ppðI2 PÞ ¼ 0 ð3Þ

using the additional constraint that the sum of each row

equals to 1 it is possible to calculate the transition

probabilities of P. There is, thus, an advantage of using

this type of modelling since there exists a theoretical

package to analyse the occurrence of faults and to tune the

model to behave in a desired and realistic manner.

SENSOR FAULTS

All sensors are more or less often subject to failure. The

failure type, the frequency and the time to repair are

dependent on the type of sensor, their locations, main-

tenance schemes, etc. and will differ highly between WWTP

facilities. In the model proposed here, a sensor (or actuator)

can only be in one fault state at a time, i.e. multiple faults are

neglected. The following sensor fault types are defined:

1. Operational. Measurements are only affected by normal

noise according to sensor specifications.

2. Excessive drift. Most sensors have a tendency to drift due

to various reasons. The calibration and maintenance

scheme is often set so that the drift is not in a significant

way affecting the measurements. However, sometimes

excessive drift is observed which will have a large impact

on the measurement/control system if not detected. The

drift may be both positive and negative. This type of drift

will not continue after calibration (per definition con-

nected to a maintenance action in the fault model).

3. Shift (off-set). A shift often occur after a wrong cali-

bration, a change of parts/chemicals or sudden clogging

of tubes. This means that the sensor will produce a value

and be able to follow variations in the measured variable

but with a bias in the value.

4. Fixed value. The sensor is stuck and delivers a constant

value.

5. Complete failure. A completely faulty sensor is charac-

terized by no signal or minimum (or sometimes maxi-

mum) signal for simple sensors or no/minimum signal

complemented with a failure status for more advanced

sensors.

6. Wrong gain. When sensors are calibrated, it is quite

common that the gain (slope) of the sensor will be

erroneous. This will lead to a change in the variability

around the calibration point.

7. Calibration. Although not a fault, a calibration instance

will not produce the correct measurement. The output is

simplified to that of a complete failure.

The faults listed above can be represented in a state

graph (Figure 2). As can be seen from the graph, the

occurrences of the faults are different. Fault 2 – 5 can only

occur when the sensor is operating (i.e. in state 1). Faults 4

and 5 return to state 1 with the probability of p41 and p51,

respectively, whereas faults 2 and 3 can only move to fault

7 (calibration). Fault 6 can only occur as a direct

consequence of calibration and is only ended by a new

Figure 2 | A Markov chain representation of the sensor fault model.
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calibration. The transition probability matrix for the

Markov chain representing the 7 different states is:

P ¼

p11 p12 p13 p14 p15 p17

p22 p27

p33 p37

p41 p44

p51 p55

p66 p67

p71 p76 p77

2
6666666666666664

3
7777777777777775

ð4Þ

with the empty spaces occupied by zeros. Note that it is the

parameters of P that need to be determined in order to find

the model for the faults in the list above.

Calibration instances

The timing for calibration in the model described above is

entirely stochastic. This is in many cases not realistic, since

there is normally a calibration and maintenance scheme.

The calibration instances can be forced on the system at a

certain frequency, for instance every week. This means that

the model description must be changed somewhat. To avoid

that transition to calibration is done outside the predefined

scheme, P has to be rewritten so that fault states 2, 3 and 6

are so called absorbing states. An absorbing state means

that once in this state, the system will stay in this state

indefinitely, unless the system is affected from the outside,

e.g. the time schedule for calibration. An absorbing state has

pii ¼ 1, which means that p22, p33, p77 are all equal to 1 and

that p12, p27, p37, p67 are all equal to 0.

Some sensors have the capability to autocalibrate. This

procedure is normally shorter than the manual calibration

and is automatically initiated by the sensor itself. Since the

duration is relatively short, autocalibration is not included

in the corruption of the measurements. However, the model

proposed here can easily include autocalibration as well.

The normal output from a sensor during autocalibration is

to hold the last known value. This fault type is already

included and it is basically only a matter of estimating the

transition probabilities for that fault to what is expected

from autocalibration.

Actuator faults

Actuator faults are similar to those of sensors. The most

obvious malfunction is naturally no actuator capacity at all.

However, it is also possible to imagine faults corresponding

to drift, shift and fixed value of sensors. An important

difference, though, between failures in actuators and sensors

is that actuators normally do not provide means to detect the

malfunction. Pumps may have indicators whether they are

working or not but normally no information is given on the

current pump capacity. The same is true for valves, mixers,

etc. The actuator faults can be modelled using the model for

sensor faults but with slightly different transition proba-

bilities and the states for wrong gain (fault state 6) and

calibration (7) removed (Figure 3).

MODEL IMPLEMENTATION

Creating the fault vector

The realization of a Markov model in time is straightfor-

ward and can be written as just a few lines of code. For each

time step, the transition to a new state is done according to

a uniformly distributed random number, which is compared

with the transition probabilities of that particular state. So

far, only the timing of the fault has been discussed.

However, for fault type 2 (drift), 3 (shift) and 6 (wrong

gain after calibration) additional information is needed. For

drift fault the rate ( fr) at which the sensor/actuator is

drifting has to be defined. For the shift fault the bias ( fb)

Figure 3 | A Markov chain representation of the actuator fault model.
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must be set and for the wrong gain fault the incorrect gain

( fg) must be determined. Also, the calibration point (c0),

i.e. the concentration at which the calibration is incorrect,

must be given. By inspecting historical data, reasonable

average values for these parameters can be found. Assuming

Gaussian distribution for the parameters, these are imple-

mented as normally distributed random variables with the

appropriate mean and variance. With information on the

current state, a vector of the effect on the measurement is

created. In Table 1, this vector is shown for the different

fault types. The displayed vector is designed to fit imple-

mentation in Matlab/Simulink and is explained further in

the following section.

Simulation model

Here, the classification of Rieger et al. (2003) and its

corresponding models will be used to illustrate how the

result of the Markov model is implemented in a simulation

environment. In Figure 4, a block diagram of the class C1

sensor of Rieger et al. (2003) is shown. It can be seen that

the class C1 sensor contains a transfer function that gives

a dynamic response, a noise source, saturation and a sample

and hold for mimicking the discrete output.

In Figure 5, the implementation of the fault vector on

the C1 sensor is shown. The design of the fault vector is

explained by how the different faults act in different places

in the sensor: a drift is imposed as a linearly increasing

or decreasing bias; a shift is simply a bias; a fixed value

keeps the last output value; a complete failure sets the signal

to minimum output (often zero); the incorrect gain is

multiplied with the signal and the calibration point is

removed as a bias; and for calibration the output is set to

minimum output.

EXAMPLE – SENSOR MODELLING

To illustrate how the model can be tuned to display the

behaviour of a specific sensor, online ammonia measure-

ments will be used to exemplify the approach. The

measurement location is in the influent stream to a small

treatment plant in Sweden, serving approximately 15 000

people (Rosen 1998). The fact that the sensor is located in

the influent makes it subject to many disturbances and

faults since it is exposed to the raw wastewater. In Figure 6,

the ammonia measurements are shown, covering a period

of 286 days and sampled every 15 minutes (in total 27,503

samples).

Identifying the Markov model

The first step is to identify the different types of faults

present in the data series. By looking at Figure 6, it is clear

that there are at least 3 major breakdowns of the sensor: at

Table 1 | Fault types and their corresponding fault vector

Fault type Fault vector

1. Fully functional [1 0 1 0]

2. Excessive drift [1 (t 2 t0)·fr 0 0]

3. Shift [1 fb 1 0]

4. Fixed value [0 0 0 1]

5. Complete failure [0 0 0 0]

6. Wrong gain [ fg (1 2 fg)·c0 0 0]

7. Calibration [0 0 0 0]

t ¼ current time and t0 ¼ time for start of drift event.

Figure 4 | A class C1 sensor (Rieger et al. 2003).
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days 22 – 29, 141 – 146 and 271 – 286. These are

classified as type 5 faults – complete failure. However, a

closer inspection reveals another 12 breakdowns. It is also

possible to distinguish calibration instances (the sudden

drops in the data series), which seems to be rather

irregular in time (we will therefore model the calibration

instances stochastically). The sensor is calibrated (or

maintained, e.g. cleaning) at 102 instances during the

period. These instances are consequently classified as type

7 – calibration. Further, it is possible to find a number of

instances where a faulty calibration results in wrong gain

(or slope). These instances can be seen at days 38–42,

85–92 and 130 2 131 and are classified as type 6 – wrong

gain. Although errors of type 2–4 certainly are present, the

great variability of the data series makes it difficult to

distinguish these and they are therefore not considered in

this example.

The second step of characterising the measurement

data is to determine the average duration of each fault

type. The average duration of the 15 complete break-

downs (type 5) is 251 samples (approx. 2.6 days). For the

instances with wrong gain after calibration (type 6), the

average duration is 354 samples (approx. 3.7 days) and

for the calibration instances (type 7) 3.8 samples (approx.

1 hour). The last piece of information needed to be able

to solve Equation 3 is the fraction of the total time each

fault occurs. The sensor is in the type 5 fault 14 % of the

time (the number of samples in type 5 divided by the total

number of samples). The sensor is in the type 6 fault 4 %

of the time and in the type 7 fault 1 %. Since we disregard

fault type 2 – 4, the sensor is its in normal state the

remaining 81% of the time. The desired stationary

solution is thus:

pp ¼ ½0:81 0 0 0 0:14 0:04 0:01 �

Now, we have the information to start defining the

probability matrix P. Referring to Equation 4 there are at

start 19 unknown transition probabilities. However, the

number of unknowns can be reduced. Since states 2–4

are not considered, transition probabilities associated with

these states can simply be set arbitrarily since p12, p13 and

p14 must be set to zero (meaning no probability to go to

states 2 – 4). For instance, set p22, p33 and p44 to one and

Figure 5 | The implementation of the seven fault types in a class C1 sensor.

Figure 6 | Ammonia measurements in the influent of a Swedish WWTP.
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p27, p37 and p41 to zero. Now, 10 unknowns remain.

The information obtained from the characterisation of the

faults will now be used. Since we know the average

duration in states 5, 6 and 7, we can assign transition

probabilities to p55, p66 and p77, which will give us p51

and p67 since we have the condition that the sum of

each row must equal one. The transition probability for

p55 is simply the 1 minus the inverse of the average

duration in that state since it describes the probability to

stay in the state: p55 ¼ 1 – 1/251 ¼ 250/251. Conversely,

p66 ¼ 353/354 and p77 ¼ 3/4 are the transition proba-

bilities to stay in state 6 and 7, respectively. Now, the

number of unknowns has been reduced to five: p11, p15,

p17, p71 and p76. However, from Equation 3 we only have

four equations remaining but we need five to solve the

system. We then use the row sum condition and add the

equation p71 þ p76 þ p77 ¼ 1. The solution of Equation

3 becomes:

P ¼

0:9950 0:0007 0:0043

1:0

1:0

1:0

0:0040 0:9960

0:9972 0:0028

0:2423 0:0077 0:7500

2
6666666666666664

3
7777777777777775

Note that although the sensor is in the fully functional state

81% of the time, the transition probability to stay fully

functional is 99.5% (p11). This is perhaps somewhat

Figure 7 | The simulated ammonia measurements (top). Closer inspection of simulated measurements (bottom left) and real measurements (bottom right).
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surprising but nevertheless true due to the high proba-

bilities to remain in states 5 and 6 for long periods of time.

Realization

Referring to the classification of Rieger et al. (2003), we use

a class C1 sensor and its corresponding model to implement

the ammonia sensor in the simulation environment as

shown in Figure 5. The only adjustment compared to Rieger

et al. (2003) is that the noise level is decreased to 1% of the

maximum value since this fits better with the real

measurements (the proposed level is 2.5%). Since we

disregard fault types 2 and 3, the only remaining parameter

to set is the one of fault 6 (wrong gain). Since the real

ammonia data displayed an increased gain, this parameter is

set to a random variable with an average of 2 and a standard

deviation of 0.1 (when the fault occurs the gain is doubled).

As input to the sensor model we use the influent ammonia

to the BSM2/BSM1_LT (Gernaey et al. 2006). It is

important to note that no attempts have been made to

make the simulated measurement similar to the real

measurement in terms of mean value, diurnal variation,

etc. Focus is only on the quality aspects of the measure-

ments, that is, faults, failures and noise.

In Figure 7, the simulated sensor is shown (top panel).

When comparing this with the real sensor output (Figure 6),

they display similar behaviours in terms of faults, calibra-

tions, etc. Also, at a closer investigation of both the

simulated and the real measurements, it is not obvious

which is real and which is simulated.

CONCLUSIONS

In this paper, an approach for modelling sensor and

actuator faults and failures is proposed. The approach is

based on the theoretical framework of Markov chains. The

approach allows for transferring sensor and actuator history

into sensor/actuator models, which produce realistic

characteristics. It is shown by an example that the Markov

framework is suitable for generating faults and together

with models for sensor dynamics will add significantly to

the realism of simulated measurements. The added realism

can be used to test robustness of different control and

monitoring strategies.
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