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ABSTRACT: An efficient approach is introduced to help
automate the rather tedious manual trial and error way of
model calibration currently used in activated sludge model-
ing practice. To this end, we have evaluated a Monte Carlo
based calibration approach consisting of four steps: (i)
parameter subset selection, (ii) defining parameter space,
(iii) parameter sampling for Monte Carlo simulations and
(iv) selecting the best Monte Carlo simulation thereby pro-
viding the calibrated parameter values. The approach was
evaluated on a formerly calibrated full-scale ASM2d model
for a domestic plant (located in The Netherlands), using in
total 3 months of dynamic oxygen, ammonia and nitrate
sensor data. The Monte Carlo calibrated model was validated
successfully using ammonia, oxygen and nitrate data col-
lected at high measurement frequency. Statistical analysis of
the residuals using mean absolute error (MAE), root mean
square error (RMSE) and Janus coefficient showed that the
calibrated model was able to provide statistically accurate and
valid predictions for ammonium, oxygen and nitrate. This
shows that this pragmatic approach can perform the task of
model calibration and therefore be used in practice to save
the valuable time of modelers spent on this step of activated
sludge modeling. The high computational demand is a
downside of this approach but this can be overcome by
using distributed computing. Overall we expect that the use
of such systems analysis tools in the application of activated
sludge models will improve the quality of model predictions
and their use in decision making.
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Introduction

The typical practice of modeling full-scale activated sludge
systems comprises numerous steps starting from (i) the
definition of the modeling objective to (ii) data collection
and quality check, (iii) formulation of the mathematical
models for different plant units/processes, for example for
hydraulics, biological, physical and chemical processes, (iv)
steady-state and dynamic model calibration, (v) validation
and model use (Sin et al., 2005). The relatively short history
of dynamic activated sludge modeling (which started at the
end of 1970s and was accelerated with the release of ASM1
by Henze et al., 1987) clearly shows that a significant degree
of expert and process knowledge was, and still is, being used
during different steps in the modeling process, for example
which sub-model to choose for describing different plant
units/processes, how to fractionate the influent wastewater
into the model components, which data are needed for
model calibration, which parameters should be calibrated
and how, etc. This way or philosophy of modeling can be
best described as being predominantly ad hoc and heuristic.
It becomes clear in the recently published activated sludge
modeling guidelines: particularly in the WERF protocol
(Melcer et al., 2003), the STOWA protocol (Hulsbeek et al.,
2002) and the HSG guidelines (Langergraber et al., 2003)
and to some extent also in the BIOMATH protocol
(Petersen et al., 2002; Vanrolleghem et al., 2003). A
thorough analysis of the existing modeling guidelines can
be found in Sin et al. (2005).

In short, these guidelines aim to help consultants/
engineers perform the minimum work that is required to
get an adequate level of accuracy from the calibrated model
Johnson (2006) in the modelEAU forum (http://www.
modeleau.org/forum/viewtopic.php?t¼15). This absolute
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minimum calibration effort trend has resulted in a model
calibration practice where the majority of the model
parameters are fixed while only few parameters (and these
are mostly the influent fractions) are adjusted on the basis of
a relatively small set of experimental data.

Systems analysis offers an alternative approach to this
‘‘heuristic’’ modeling practice and promises to ground the
modeling exercise on a generally agreed systematic frame-
work (Beck, 1987). However, there are some drawbacks with
this approach too. Previous applications of systems analysis
to activated sludge models (Abusam et al., 2001; Brun et al.,
2002; von Sperling, 1994; Wanner et al., 1992; Weijers and
Vanrolleghem, 1997) revealed that these methods are
computationally demanding and that the identification of
ASMs is currently practically not possible (Gujer, 2006). In
fact the only study (known to us) that claimed that all ASM1
parameters are identifiable was strongly criticized and
disapproved since it was shown to be methodologically
flawed (De Pauw et al., 2004). The reason for this is twofold:
on the one hand the ASM model structure and the selected
measured variables (to be used for estimation) do not allow
unique identification of all parameters and on the other
hand, the quantity and quality of data typically gathered at a
treatment plant is far from being sufficient to properly
identify all model parameters. Hence the use of classical
search algorithms for non-linear estimation of all the model
parameters has so far failed due to the complexity of such
estimation problems. For example, local optimization
algorithms (e.g., the simplex algorithm (Nelder and Mead,
1964)) would get stuck easily in local minima, while global
optimization algorithms (e.g., genetic algorithm, simulated
annealing, etc.) would require an enormous number of
simulations before providing the parameter estimates
(Banga et al., 2005). A hybrid approach employing classical
local algorithms nested within Monte Carlo method
demands even much larger numbers of simulations (von
Sperling, 1994).

In the field of hydrological modeling several Monte Carlo
based methods have also been successfully developed for model
calibration, most notably the GLUE method (Beven and
Binley, 1992) and the SCEM-UA algorithm (Vrugt et al., 2003).
These methods are powerful for the quantification of
parameter and prediction uncertainty (see, e.g., Gallagher
and Doherty, 2007; McIntyre et al., 2002). However these
methods also come with a heavy computational demand,
which becomes infeasible for models whose simulation takes
more than even a few seconds (Gallagher and Doherty, 2007).
Important to recall is that one simulation of a typical WWTP
model has a computational time associated with it in the
order of tens of minutes, which makes the application of
above-mentioned methods to WWTP models practically
infeasible. In short, the existing statistical algorithms known
to us for parameter estimation fail to provide a feasible
solution for the calibration of the complex activated sludge
models.

Having recognized this situation as the prime reason
behind the manual calibration of WWTP models in practice
(because all the above-mentioned approaches failed for
practical reasons), we turn our attention to automate the
steps typically involved during the manual calibration by a
modeler in this study. To this end, we propose a pragmatic
methodology using a Monte Carlo procedure but in a
different scope which will become clear below. The emphasis
in this pragmatic approach is to make practice move further,
by automating the steps involved in the manual trial and
error approach of model calibration. Eventually, it is aimed
to make this time-consuming step of activated sludge
modeling more efficient in view of the modeler’s time. This
study was performed as part of the MORE project-Model-
Based Optimization of Wastewater Treatment Plants,
initiated by the Waterboard De Dommel—a water
authority responsible for the water management in the
South-Eastern part of the province Noord-Brabant (The
Netherlands). This project aims at improving the quality
and the efficiency of the modeling process and the
knowledge about application of models in practice.

The detailed description of the Monte Carlo based
approach and its motivation is given below in A Pragmatic
Monte Carlo Approach for Calibration of ASM’S Section.
The calibration approach was evaluated on a formerly
developed ASM2d model of the full-scale (50,000 PE)
Haaren WWTP located in The Netherlands. For the
re-calibration of the model using the new approach, we
have used long-term on-line oxygen, ammonia and
nitrate measurements from the (carrousel) aeration tank
of the plant as described in Materials and Methods Section.
In Results Section, we present the results of the calibration
approach and we also perform a validation of the calibrated
model. These results are then evaluated and discussed in
Discussion Section. Finally, we concluded the manuscript
with perspectives and conclusions.
A Pragmatic Monte Carlo Approach for
Calibration of ASM’S

Motivation for a Pragmatic Approach

In practice, a step-wise manual calibration procedure
typically involves the following operations: (1) the modeler
selects a parameter subset [that depends on which guidelines
he/she follows during the study, compare STOWA vs. WERF
vs. BIOMATH] (2) the modeler runs the model with
reference parameter values and visually compares the
resulting fits to the available data (3) the modeler changes
one parameter value at a time (the way a parameter is
changed, e.g., increasing or decreasing depends on the
modeler’s experience and usually the value will be taken
from a parameter range with a lower and upper bound) and
runs the model again and compares the resulting fits
visually, last (4) the modeler iterates step 3 until a sufficient
goodness of fit is obtained—a termination criterion which is
subjected to the judgment of the modeler doing the
calibration. This procedure is subjective (because it is not a
Sin et al.: Automatic Monte Carlo Based Calibration of ASMs 517
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parameter estimation in a statistical sense) and obviously
quite tedious and time consuming since the modeler will
have to wait each time for quite a while for the simulation
job to be finished before judging the goodness of fit and
iterate a few times until terminating the calibration task.

To frame the above-mentioned steps of this manual
calibration on an algorithmic basis which can be automated,
we have chosen to use the Monte Carlo procedure that also
involves a step-wise procedure similar to the above-
mentioned steps. In this pragmatic approach, we use the
Monte Carlo procedure to produce a number of model
simulations which results from exploration of the parameter
space selected by the modeler. In this sense, the Monte Carlo
procedure is used to efficiently (by an appropriate choice of
sampling technique see below) cover the parameter space
and thereby provide the corresponding model fits to
the available data. These model fits are then presented to
the modeler to let him/her evaluate both visually and
statistically before making a choice. These steps are
summarised in Figure 1 and detailed below.

The difference of this pragmatic approach from the
bayesian parameter estimation methods such as SCEM-UA
and GLUE is clearly that a parameter search (optimization)
algorithm is not implemented nor bayesian inference is
employed to update the prior information for the pure
reason that their computational burden is too heavy to
implement (see Introduction Section).

Further, we have chosen to use the Latin Hypercube
Sampling (LHS) technique for sampling the parameter space
Figure 1. The pragmatic Monte Carlo approach for systematic calibration of

ASMs.
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(McKay et al., 1979) since it allows an efficient way of
covering the parameter space using a relatively small sample
size (Helton and Davis, 2003). The latter is important as it
determines the computational demand needed to complete
the required number of Monte Carlo simulations. Hence,
the resulting computational demand of the Monte Carlo
simulations can be controlled by the user by decreasing or
increasing the number of samples. This is particularly
important since performing one long-term WWTP simula-
tion on a Pentium IV type PC may take 1–2 h (at least in the
case studied here).
The Monte Carlo Approach for Model Calibration

For notational convenience, let the WWTP model structure
be represented by f and g:

dxðtÞ
dt

¼ fðxðtÞ; uðtÞ; t; uÞ
yðt; uÞ ¼ gðxðtÞ; uÞ

(1)

where x, u, y and u denote the state vector, the input vector,
the output (measured variables) vector, and the parameters
vector, respectively. The Monte Carlo procedure typically
involves the following steps: (1) specifying the range for each
parameter (2) sampling the parameter space and (3)
simulating the sampled parameter values through f and g
to obtain the resulting model predictions, y.

The LHS of the parameter space is illustrated in Figure 2
for the parameters u1 and u2. Both parameters are assumed
to have a uniform distribution with upper and lower bounds
equal to ½ 0:5 3:5 � and ½ 0:1 2 �, respectively. To draw a
certain number of samples, say N, from the 2� 2 parameter
space formed by u1 and u2 the following steps are taken
(Helton and Davis, 2003):
(1) F
irst, the range of each parameter is divided into N
intervals of equal probability (1/N). For each parameter,
one value is randomly selected in each interval. This step
results in N randomly selected values for parameters u1

and u2.

(2) T
he LHS is then completed by randomly pairing the

values of u1 and u2 leading to N couples of the
parameters u1 and u2. The end result of the sampling is
shown in Figure 2 where one can also see that the higher
the sampling, the better the coverage of the parameter
space will be.
Finally, the steps involved in the pragmatic calibration
approach for activated sludge models are summarized below
(which was also illustrated in Fig. 1):
(1) S
election of parameter subset: This step concerns
selection of parameter subset for calibration. This is
typically required as only a subset containing few
parameters among the many parameters (up to 75) of
the ASMs can be identified (Brun et al., 2002; Ruano



Figure 2. Illustrating the concept of Latin Hypercube Sampling: sampling num-

ber of 10 (top) and sampling number of 100 (bottom; see text for explanation).
et al., 2007; Weijers and Vanrolleghem, 1997). As
mentioned above, it can be based on previous
experiences and expert knowledge (e.g., only estimate
the influent fractions) or it can (preferably) be based on
a sensitivity analysis (identifiability) study or an
appropriate combination of both methods (see for a
detailed Discussion in Ruano et al. (2007)). It is
important to note that all other parameters not selected
for calibration are given a default and/or literature
value, which for domestic WWTP has been found
acceptable (Brun et al., 2002; Ruano et al., 2007).
(2) D
efinition of parameter space: This step involves defining
an appropriate range for each of the parameters to be
estimated. Similar to the first step, the large body of
experiences and knowledge accumulated in literature
about ASM parameters can be used to define the upper
and lower bounds of realistic values for the parameters
to be calibrated (Brun et al., 2002; Cox, 2004). Equally
the modeler can make use of process knowledge to
define a suitable range on the operational parameters of
the plant (e.g., temperature, flow rates, etc.). In this
study, we assumed a uniform distribution to be
appropriate for each parameter.
(3) S
ampling and running Monte Carlo simulations: In this
step, a specified number of simulations is performed,
each with a different set of parameter values sampled
from the parameter space using a LHS technique. Each
LHS sample of parameter values is then simulated
resulting in the so-called set of Monte Carlo simula-
tions. Each of these simulations is compared to the
calibration data, and an objective function value can be
calculated. Very often, this objective (or cost) function
is chosen as the (weighted) sum of squared errors,
(W)SSE, or mean absolute error (MAE) and the like.
(4) E
valuation of the Monte Carlo simulations: This step
involves selecting the parameter set which resulted in
the lowest objective value and, thus, for which the
model describes the measured data best. A visual and
statistical evaluation of the best model fit should be
done to decide whether the end result is adequate. In
case the evaluation is not positive, then the procedure
should be iterated (see below).
In step 4 of the procedure, the good modeling practice
requires one to perform a validation to check the prediction
power of the model against a data set different than the one
used for the calibration. If the quality of the model fit is found
insufficient, then the underlying reasons should be investi-
gated and the procedure should be iterated. The lack-of-fit
could be due to (i) the use of an unidentifiable subset of
parameters [go to step 1] (ii) a too narrow or too large
uncertainty assumed on the a priori distributions of one or
several parameters (go to step 2), (iii) an inadequate coverage
of the parameter space, (increase the number of LHS samples
and go back to step 3) or (iv) the model structure is not
correct (find out the underlying reasons, modify the structure
appropriately and go back to step 1).

As part of this procedure, the initialization of the model’s
state variable was also performed during each Monte Carlo
simulation. This is needed since changing some parameters
of the model may influence the initial conditions of the
system at the start of the calibration period (e.g., biomass
composition). This is illustrated in Figure 3, where one
Monte Carlo simulation period consists of two subsequent
parts: an initialization period (performed by considering a
short history of the plant, i.e., three times SRT) followed by a
calibration period in which the model predictions are
compared with reality, that is the objective function (e.g.,
SSEs) is calculated.
Materials and Methods

The Simulation and Calibration Software

The calibration described in this work was performed using
a dedicated software tool, MORE, which was specifically
developed with automation of the calibration process in
Sin et al.: Automatic Monte Carlo Based Calibration of ASMs 519
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Figure 3. Scheme describing initialization as part of the dynamic calibration method. The time axis indicates the operational period of the plant used in this modeling study.
mind. It is intended to allow for easy data collection and data
quality analysis, sensitivity analysis of the model parameters,
(steady-state and dynamic) model calibration and scenario
analysis. This software is linked through the API module
with the WEST1 modeling and simulation software
(MOSTforWATER NV, Kortrijk, Belgium) in order to
perform the model simulations.
Haaren WWTP

The treatment plant under study is located near Haaren,
Noord-Brabant, The Netherlands. It is a carrousel type plant
receiving the wastewater of 50,000 PE. The recorded average
dry weather flow rate of the plant during the study was
around 10,000 m3/day. The plant consists of one anaerobic
reactor, two carrousels and four clarifiers (see Fig. 4). The
carrousel reactors are operated in parallel and basically the
system has two lines after the anaerobic selector. The sludge
wastage rate is manually controlled according to off-line
daily SVI measurements, except for the weekends where no
sludge is wasted from the plant. The volumes for the
anaerobic compartment (1), carrousels (2) and the clarifiers
(4), are given in total as 1,400, 10,000, and 2,460 m3,
respectively. The operational SRT of the system is around 22
Figure 4. Schematic diagram of t

520 Biotechnology and Bioengineering, Vol. 100, No. 3, June 15, 2008
days. The overall hydraulic retention time of the system is
1.4 days.
The Model Structure of the Haaren Plant

The Haaren model used here for evaluation of the new
calibration framework is a result of extensive calibration and
validation work previously done on the Haaren plant. This
included an intensive measurement campaign for influent
fractionation, hydraulic profiling, settling characterization,
controller model development, solids balancing and
calibration of the phosphate and the nitrogen dynamics
(Insel et al., 2007; Sin, 2004; Vanrolleghem et al., 2003). The
model’s general features are outlined below.

The hydraulics was described following the tanks-in-
series approach, where a number of four CSTRs was deemed
sufficient to describe the selector. This selection was based
on the geometry of the tank which had four-compartments
and was supported by the phosphate measurements in each
of these compartments of the selector. The carrousel was
described as a loop of eight equal volume CSTRs of which
the two CSTRs (numbered as 1 and 4) represented the
location of the two surface aerators. This selection was based
on the study of Abusam and Keesman (1999) which found
he Haaren activated sludge plant.



that a higher number of CSTRs (e.g., 16) does not
significantly affect the simulated effluent quality results—
a conclusion supported by tracer studies of mixing in
carrousel type plants (De Clercq et al., 1999). Since the
settling was very good, the clarifiers were described using an
ideal point settler model. The biological phosphorus and
nitrogen removal processes were described using the ASM2d
model. The control strategy of the surface aerators, the
details of which are explained elsewhere (Insel et al., 2007;
Sin, 2004), was described with a dedicated algorithm
implemented in the WEST Model Specification Language
(MSL, Vanhooren et al., 2003).
Figure 5. Diurnal influent loading as measured intensively for 4-days during mid-

June 2003.
Long-Term Data for the Dynamic Calibration

For the re-calibration of the Haaren model using the new
framework, a long-term data set with high frequency
measurements was used. For the model’s initialization, 3
months daily averaged influent load data starting from
November 17, 2003 up until February 15, 2004 were used.
The high-frequency data set used, started from February 16,
2004 up until May 12, 2004 and consisted of on-line NH4-N,
DO and NO3-N measurements once every 5 min. The total
size of the calibration and validation data set is equal to
24,768 measurements for each variable (86 days� 1,440
min/1 day� 1 measurements/5min¼ 24,768 measure-
ments). Roughly the first 2/3rd of the data set was used
for dynamic calibration, while the remaining third of the
data were used for the validation of the model.

The influent temperature measurements were also
available from the routine plant monitoring and used as
input to the model. The dynamic influent load data needed
for the long-term dynamic simulation was obtained from
the available and also dedicated measurements as follows.
First, the daily average influent load was interpolated from
the 24 h flow-proportionally sampled bi-weekly measure-
ments of influent COD, TN and TP. Second, the diurnal
influent load pattern was obtained by averaging the diurnal
influent load profiles obtained from 4-days of intensive
measurements (4-h flow-proportional) performed in June
2003 (see Fig. 5). Together with BOD (28 days) measure-
ments, these intensive influent and effluent measurements
were used to calculate the average fractions of the influent
COD, which were found as 0.05, 0.12, 0.22, 0.28, and 0.33,
respectively for the inert soluble COD, volatile fatty acids,
degradable soluble COD, inert particulate COD and
degradable particulate COD (Insel et al., 2007).
Data Quality Check and the Solids Balance

The quality of the data used during calibration and
validation was checked following simple statistical analysis,
for example an outlier check and error analysis for the flow
balance and correlation analysis between the on-line sensor
measurements and control measurements for ammonium
and nitrate, respectively (see Sin et al., 2006).
The steady-state solids balance, particularly the sludge
wastage rate which determines the SRT of the plant was
confirmed to be 22 days. For the steady-state balance, the
average influent load observed during 7 months, corre-
sponding to the initialization, calibration and validation
periods, was used.
The Modeling Guideline

The BIOMATH protocol (Vanrolleghem et al., 2003) was
followed during the different steps of the WWTP modeling,
for example the goal definition, data collection and quality
check, mathematical formulation of plant units/processes,
influent characterization and steady-state modeling (as
mentioned above).
Statistical Criteria for Evaluating Model Fits

The weighted SSEs objective function, WSSE is calculated as
follows:

WSSEðuÞ ¼
Xm

k¼1

Xn

i¼1

ymeas;k;i � ykðti; uÞ
sck;i

� �2

(2)

where u is the parameter subset, ymeas,k,i is the
ith measurement of the kth variable y, and yk(ti, u) is the
corresponding model output at the ith time instance. m is
the total number of variables, y, while n is the total number
of observations of variable yk used for model calibration. sck,i

is the scale of the model output yk at the ith time instance.
This term is needed to make the sum term non-dimensional,
and is chosen here as the standard errors of the
measurements, syk and is assumed constant at all time
instants. The standard deviation of the on-line sensors of
ammonium, sNH4

, nitrate, sNO3
, and oxygen, sO2

, were
obtained from the specifications of the manufacturer as
follows 0.17, 0.68, and 0.05 mg/L, respectively.
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To assess the quality of the model fits, the statistical tests
suggested by Power (1993) were used that includes the MAE,
root mean squared error (RMSE) and Janus coefficient.
These tests are calculated, respectively by Equations (3)–(5).
All parameters are as defined above, except for n_cal and
n_val, which stand for the total number of measurements
used in the calibration and validation periods, respectively

MAE ¼ 1

n

Xn

i

ymeas;i � yðti; uÞ
�� �� (3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i

ðymeas;i � yðti; uÞÞ2

s
(4)

J2 ¼
1

n val

Pn val

i¼1

ðymeas;k;i � ykðti; uÞÞ2

1
n cal

Pn cal

i¼1

ðymeas;k;i � ykðti; uÞÞ2

(5)
Results

The Modeling Objective

As mentioned above, the previously developed Haaren
model was used in this study to evaluate the Monte Carlo
approach for calibration. However, to keep the study
focused on the calibration approach itself, the modeling
objective in this particular study was set to adequately
describe only the nitrogen (nitrate and ammonium)
dynamics in the carrousels of the Haaren plant (the
phosphorus removal was described using the previously
calibrated PAO parameters of the Haaren model performed
in Insel et al. (2007)). In this particular study the model is
also required to remain valid for a 1-month time-frame after
its calibration, since it is foreseen to be used in day-to-day
management of the plant by the operators.
Evaluation of the Monte Carlo
Based Calibration Procedure

Step 1: The parameter subset for dynamic calibration was
selected following the experience-based approach. The
selection was based on process engineering knowledge in
Table I. The mean, upper and lower ranges of uniform distribution of the p

mAUT (day�1) KO,AUT (mg/L) KO (mg/L) hg kh (da

Upper 2 1 1 1 4

Mean 1 0.4 0.3 0.6 3

Lower 0.8 0.1 0.1 0.2 2
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biological nutrient removal and the modeling experiences of
the authors with the ASM2d model (e.g., WERF; Melcer
et al., 2003), STOWA protocol (Hulsbeek et al., 2002),
BIOMATH protocol (Insel et al., 2006; Vanrolleghem et al.,
2003). The list of selected parameters is given in Table I.

Step 2: For each parameter a uniform distribution was
chosen since no a priori information is available about the
statistical distribution of these parameters in activated
sludge models. The upper and lower bounds of the uniform
distributions of the biokinetic parameters were defined on
the basis of values reported in relevant literature, mainly
Brun et al. (2002), Cox (2004) and Henze et al. (2000). The
distribution of the parameters related to the operation of the
aerators was defined based on manufacturer specifications
and dedicated experiments performed with the aerators. The
uniform distributions assigned to each of the parameters are
given in Table I.

Step 3: For the LHS sampling, 500 samples were taken
from the 9� 9 dimensional (hyper) space formed by the
parameters. As each LHS sample contains randomly selected
values for each of the nine parameters, this means 500
simulations were performed using 500 randomly selected
values of the nine parameters. The resulting values of the
objective obtained from the 500 Monte Carlo simulations
provide the squared distance between the model predictions
and the measurements. In a way these results also provide a
global picture of the objective function indicating how the
difference between the model and the data changes as one
wanders in parameter space.

Step 4: In Figure 6, the objective function values obtained
from the Monte Carlo simulations were sorted from
maximum to minimum to help interpret the results. With
this ranking done, one can select the parameter sample that
provides the minimum objective function value. This LHS
sample is then accepted as the calibrated parameter set for
the model; hence not an optimal but a pragmatically
calibrated model is obtained. The parameter sample is given
in Table II and the resulting model fit to the measurements is
presented in Figure 7.

In general, Figure 7 suggests that the model is able to
follow the measured daily dynamic trends in ammonia and
nitrate (see the zoomed day pattern in the same figure).
These measured trends are basically the footprints of the
aeration controller which periodically controls the oxygen in
the carrousel: during full aeration the nitrate rises and the
ammonia decreases while in the intermittent aeration period
the nitrate is decreased while the ammonia accumulates.
Generally, the model match of the measured oxygen was
found in good agreement with the measurements.
arameter subset.

y�1) hfe KLamax (day�1) KLamin1 (day�1) KLamin2 (day�1)

1 350 70 30

0.2 300 50 10

0 200 30 5



Figure 6. Monte Carlo simulations ranked according to WSSE criteria: the y-axis is given on a logarithmic scale to better compare large and small numbers.
One observes a significant mismatch between the model
and the ammonium measurements between the 19th and the
23rd of February (see Fig. 7). We believe this mismatch is
largely caused by a sudden increase in the influent
ammonium load to the plant, which was not measured at
the plant nor could it be estimated from the influent load
interpolation step (see above).

A detailed statistical analysis of the quality of the model
fits is given below in the Discussion Section.
Validation of the Calibrated Model

Evaluation of the calibrated model, which uses the
parameter subset corresponding to the least objective
function value (see Table II) on a different data set is
performed in this section within a model validation
framework. For the validation of the model, the next 1-
month of data following the calibration period is used
(Fig. 8). Visual comparison of the calibrated model
predictions with the validation data set indicate that the
model could still reproduce the trends in nitrate (especially
starting from the April 23 till the May 12). While the general
trends were followed by the model predictions (see the
zoomed day pattern in Fig. 8), one can observe a systematic
difference between the nitrate data and the model,
particularly, between the 11th and the 20th of April, which
suggests the model has a bias (see below for a detailed
quantification). For the oxygen dynamics the general trend,
that is full and intermittent aeration periods, also appears to
be captured by the calibrated model. A statistical assessment
of the model fits is given below.
Table II. The parameter sample providing the minimum objective function

mAUT (day�1) KO,AUT (mg/L) KO (mg/L) hg kh (d�1)

1.15 0.52 0.20 0.65 2.97
Discussion

Evaluation of the Calibration Procedure

The WSSE profile obtained from the Monte Carlo procedure
is flat which indicates that there exist many parameter values
providing a similar fit to the data. The latter points to the
identifiability issues typically encountered when employing
parameter estimation (see, e.g., Brun et al., 2002; Ruano
et al., 2007; Weijers and Vanrolleghem, 1997) whose
underlying reasons are explained above (see Introduction
Section). Second, the procedure is reproducible when it is
run with the same LHS number and provides similar (flat)
WSSE profiles (results not shown). In each run, one could
obtain equally good model fits to the one shown here but
with different parameter values. Hence, it is important to
remind that this method is not meant for parameter
identification purposes, but for model calibration purposes
and as an algorithmic procedure to automate the steps of the
manual calibration procedure.

The goodness of model fits was evaluated using several
criteria commonly used in modeling including MAE, RMSE
and Janus coefficient (Elliott et al., 2000; Power, 1993). The
first two criteria indicate the prediction accuracy and should
be as small as possible, while the last criterion relates to
model validity and should be close to 1. Looking at the MAE
criterion in the calibration and validation periods
(Table III), we find that there is a systematic difference
between the measurements and the predictions. Further, the
prediction accuracy of the model for ammonium decreased
from 1.4 mg N/L in the calibration period to 1.0 mg N/L in
the validation period. The RMSE of the ammonium
prediction is also found to decrease in the validation period
value obtained from the Monte Carlo-based calibration.

hfe KLamax (day�1) KLamin1 (day�1) KLamin2 (day�1)

0.20 326.0 37.8 7.82
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Figure 7. The best model fit obtained from 500 LHS samples out of the parameter space: measurements (black line) simulation (gray line). The last day was zoomed in to

provide a better visualization of the data and the simulation (right).

Figure 8. Model validation results using 1 month of independent data: measurements (black line) simulation (gray line). The last day was zoomed in to provide a better

visualization of the data and the simulation (right).
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Table III. Comparison of the model fits during calibration and validation.

Ammonium Nitrate Oxygen

Calibration Validation Calibration Validation Calibration Validation

Total no. of data 16,117 9,217 16,117 9,217 16,117 9,217

MAE 1.39 0.98 2.56 2.31 0.48 0.29

RMSE 2.55 1.40 3.03 2.87 0.80 0.51

Janus coefficient 0.6 0.9 0.7
(see Table III) supporting the MAE criterion. These results
are meaningful since it means that as the prediction accuracy
increases, the mean absolute difference between the
measurements and the simulation also decrease. The Janus
coefficient for the ammonium is found to be 0.6, which
means that the mean prediction error decreased in the
validation period compared to the calibration period. It also
suggests that the model structure remained more or less the
same as J is still in the neighborhood of 1. In short, based on
these statistical criteria, one may conclude that the structure
and the statistical accuracy of the model remained valid for
ammonium in both calibration and validation periods.

The underlying reason why the model performed
unexpectedly better in the validation period could be partly
because the calibration data set was more difficult to
describe (compare data set in Figs. 7 and 8). This challenge
was due to the rainfall event that occurred during the first
week of the calibration period (see the ammonium data in
Fig. 7) but which were not measured with sufficient
frequency (only routine bi-weekly influent measurements
were available). Hence, the model could not reproduce this
week resulting in a higher discrepancy as reflected by the
statistical tests.

For the nitrate predictions, the MAE and RMSE were
found around 2.5 and 3 mg N/L, respectively. Both criteria
were observed to slightly decrease in the validation period
(see Table III). These results suggest that also for this output
both the mean absolute difference and the prediction
accuracy remained more or less similar in both calibration
and validation periods. This is confirmed by the Janus
coefficient which is found quite close to 1, that is 0.9
(see Table III). Overall the validation tests are successfully
passed for this modeling study. This means that the model
structure remained valid for nitrate during the validation
periods, albeit with a systematic (absolute) error of around
2.5 mg N/L.

The quality of the model fits to oxygen measurements in
both the calibration and validation periods are equally good.
The MAE of the oxygen predictions is between 0.5 and 0.3
mg O2/L and is accompanied with a good prediction
accuracy (RMSE), between 0.8 and 0.5 (much smaller
compared to the ammonium and nitrate predictions). This
is rather acceptable, particularly when one considers the fact
that the oxygen is a controlled variable which creates an
additional difficulty in terms of correct approximation since
the adequate description of the highly dynamic inputs of the
controller in reality is a challenging task. The Janus
coefficient was found to be around 0.7, which confirms
again that the model to a large extent remained valid for the
oxygen predictions.

One ideally wishes the bias to be zero for the model
predictions. In reality, however, model building has to be
done against a background of many assumptions and
uncertainties (in influent measurements and estimation of
its fractions (e.g., only bi-weekly influent measurements
were available), mixing, default parameter values, model
structure, etc). Practical experiences with the use of activated
sludge models have reported a rather wide range of model
deviations deemed acceptable, with relative errors ranging
from 10% up to 40% (Melcer et al., 2003). Therefore, we
believe that the model bias found in this study for the
ammonium, the nitrate and the oxygen concentrations,
around 1, 2.5 mg N/L and 0.4 mg O2/L, respectively, is
acceptable for several model applications, especially when
the emphasis is mostly put on comparing different
alternatives/scenarios rather than predicting the absolute
values.
Efficiency of the Calibration Procedure

The Monte Carlo based calibration approach developed here
makes use of relatively large numbers of model simulations
to obtain a calibrated model. Since these simulations can be
performed without user intervention by a computer, a
considerable time of the modeler/engineer is thus saved,
which can be used to analyze and interpret the predictions,
which is the ultimate aim of using a model.

At the downside of our method lies essentially the
requirement of computational power to perform the lengthy
simulations in a short-time. In this particular case, one
simulation run (the simulated time period is ca. 5 months
long) required 45 min of PC-time (using a Pentium IV 3
GHz PC). Therefore, 500 Monte Carlo runs would require 2
weeks of computation time. Fortunately, this simulation
time can be considerably decreased (e.g., by an order of
magnitude) by using distributed computing, as shown in
Claeys et al. (2006). Indeed, Monte Carlo simulations allow
the distribution of the simulations on the computers
available in a computer cluster, grid or even using the
computers of an organization in their down-time. The
investment into or hiring a distributed computation service
may increase the cost of using our method but given the low
cost of computers this cost will be considerably lower than
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the cost of the time a modeler otherwise has to invest in
performing the calibration manually.
Future Perspectives: Where Do We Go From Here?

We believe the pragmatic Monte Carlo approach to the
calibration of ASM is useful (1) to successfully automate the
manual trial and error model calibration now in use in
activated sludge modeling practice but also (2) as it
introduces the WWTP modeling community to the frame-
work of Monte Carlo based model calibration. The latter can
be extended further with parameter search (optimization)
and bayesian inference algorithms for parameter and
prediction uncertainty estimation as the computational
demand eases on these methods in future. The development
of an efficient global parameter estimation method remains
desirable as it will allow obtaining unbiased estimates rather
than the approximate estimates the traditional trial and
error methods provide. Within the proposed method, the
selection of an appropriate parameter subset to be
calibrated, for example by using global sensitivity analysis
such as Morris screening (Morris, 1991) or standardized
regression coefficients (SRCs), a priori knowledge on the
distribution of the model parameters including the
correlation matrix and the required number of Monte
Carlo samples are among the important issues that need
further research.

Within the framework of full-scale model application, on
the other hand, an important issue that certainly needs
ample consideration is the fact that only a small number of
parameters are used for calibration, while all others remain
at their default or literature value. Fixing parameters at
unrealistic or inappropriate values may have serious
consequences on the extrapolation power of the model
outside the calibration conditions as the error/bias of the
predictions will increase considerably (see, e.g., Omlin and
Reichert, 1999; Vanrolleghem, 2007). Therefore, it would be
useful to perform an uncertainty analysis to assess the
magnitude of the prediction errors when using the model in
practice with possibly wrong settings of the fixed
parameters. In fact, since the calibration procedure employs
a Monte Carlo framework, it can easily be extended for
uncertainty analysis (Saltelli et al., 2005). However, such
extension of the procedure requires further research.
Conclusions

In this contribution, we have proposed and evaluated a
pragmatic Monte Carlo based approach to replace manual
trial and error calibration of activated sludge models. The
approach essentially structures the manual trial and error
approach into a systematic framework using four steps: (1)
parameter subset selection, (2) setting ranges for each
parameter in the subset, (3) LHS out of the defined
parameter space and running the Monte Carlo simulations,
526 Biotechnology and Bioengineering, Vol. 100, No. 3, June 15, 2008
and (4) evaluation of the Monte Carlo simulations and
choosing the best parameter sample.

The approach was successfully used to calibrate an
ASM2d model for a domestic wastewater treatment plant
using long-term oxygen, ammonium and nitrate data
collected at minute-scale frequency. Confronting the
calibrated model with one month of independent validation
data showed that the model was able to provide statistically
accurate and valid predictions for oxygen, ammonia and
nitrate with an acceptable bias, as confirmed by their Janus
coefficients close to 1.

Overall, the Monte Carlo-based approach allows repla-
cing the manual trial and error calibration approach in use
today with an automated approach for the calibration of
ASM parameters. In this way, it relieves the modeler from a
large part of the time consuming and tedious task of
calibration and hands it over to a (distributed) computer
(cluster or network).
Nomenclature
API
 application programming interface
ASM
 activated sludge model
ASM1
 activated sludge model number 1
ASM2d
 activated sludge model number 2d
COD
 chemical oxygen demand (mg COD/L)
CSTR
 completely stirred tank reactors
DO
 dissolved oxygen (mg O2/L)
J
 Janus coefficient
kh
 hydrolysis rate constant of slowly biodegradable COD (day�1)
KO
 oxygen affinity constant of heterotrophic biomass (mg COD/L)
KO,AUT
 oxygen affinity constant of autotrophic biomass (mg COD/L)
KLamax
 maximum oxygen mass transfer coefficient of the aerators

(day�1)
KLamin1
 minimum oxygen mass transfer coefficient of the aerators during

the anoxic phase of the intermittent aeration before the

introduction of propellers (day�1)
KLamin2
 minimum oxygen mass transfer coefficient of the aerators during

the anoxic phase of the intermittent aeration after the

introduction of propellers (day�1)
LHS
 Latin hypercube sampling
MAE
 mean absolute error
NH4-N
 ammonium nitrogen (mg N/L)
NO3-N
 nitrate nitrogen (mg N/L)
RMSE
 root mean squared error
SRT
 solids retention time (day)
SSE
 sum of squared errors
TN
 total nitrogen (mg N/L)
TP
 total phosphate (mg P/L)
WSSE
 weighted sum of squared errors
WWTP
 wastewater treatment plant
y
 model output
Greek Letters
fXI
 fraction of inert particulate COD
fns
 fraction of non-settleable solids
mAUT
 maximum growth rate of biomass (day�1)



hg
 reduction factor heterotrophic growth under anoxic conditions
hfe
 reduction factor for hydrolysis under anaerobic conditions
u
 model parameter
s
 standard error of measurements
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