
Using Modelica Models for Complex Virtual Experimentation
with the Tornado Kernel

Filip H.A. Claeys Peter Fritzson Peter A. Vanrolleghem
Department of Applied Mathematics, Programming Environments modelEAU

Biometrics and Process Control (BIOMATH) Laboratory (PELAB) Département de ǵenie civil
Ghent University Link̈oping University Universit́e Laval

Coupure Links 653 Campus Valla Pavillon Pouliot
B-9000 Gent SE-581 83 Linköping Qúebec, G1K 7P4

Belgium Sweden QC, Canada
E-mail: fc@biomath.ugent.be E-mail: petfr@ida.liu.se E-mail: peter@modelEAU.org

Abstract

Tornado is a software kernel for virtual experimen-
tation on the basis of ODE/DAE models. Recently,
a model compiler has been developed that converts
flat Modelica code to executable models suitable for
use with the Tornado kernel. As a result, a subset of
Modelica models can now be used for tasks such as
parameter estimation, scenario analysis, Monte Carlo
simulation, sensitivity analysis and steady-state anal-
ysis. The inherent computational complexity of the
virtual experiment types implemented by Tornado can
be efficiently handled by the kernel’s semi-automated
distributed execution capabilities.

Keywords: Model compiler; Virtual experimentation;
Tornado; Modelica

1 Introduction

Tornado [1] is an advanced kernel for modelling and
virtual experimentation (i.e., any evaluation of a model
such as simulation, optimization, scenario analysis,
. . .) that was recently jointly developed by BIOMATH
(Ghent University) and HEMMIS N.V. (Kortrijk, Bel-
gium). Although the kernel is generic in nature, it is
mostly adopted in the water quality domain. In water
quality research, the biological and/or chemical qual-
ity of water in rivers, sewers and wastewater treatment
plants (WWTP) is studied. Research in this domain is
facilitated by a number of models that have received
a formal orde factostandardization status. Most no-
table are River Water Quality Model No.1 (RWQM1)
[2] and the Activated Sludge Model (ASM) series [3].
Water quality models typically consist of large sets
of non-linear Ordinary Differential Equations (ODE)

and/or Differential-Algebraic Equations (DAE). These
equations are mostly well-behaved, although disconti-
nuities occur regularly. The complexity of water qual-
ity models is therefore not in the nature of the equa-
tions, but in the sheer number. In WWTP, smaller
models such as the well-known Benchmark Simula-
tion Model (BSM) [4] consist of approximately 150
derived variables. Larger systems have up to 1,000
derived variables and over 10,000 (partly coupled) pa-
rameters. On a typical workstation, a simulation run
usually lasts minutes to hours.
The modelling language that has thus far been used
in the scope of Tornado is MSL (Model Specification
Language) [5]. This language is similar to Modelica
[6] in the sense that it is high-level, declarative and
object-oriented. In fact, both MSL and Modelica were
designed according to the ideas resulting from the
1993 ESPRIT Basic Research Working Group 8467 on
“Simulation for the Future: new concepts, tools and
applications” [7]. Although similar in nature, MSL
lacks some of the readability and expressiveness of
Modelica. Therefore, it was decided to work towards
inclusion of support for Modelica-based modelling in
the Tornado framework.
The most recent result of our efforts to bridge the gap
between Modelica and Tornado is a model compiler
that converts flat Modelica (i.e., a Modelica model de-
scription that does not rely on inheritance nor decom-
position) to executable models suitable for use with the
Tornado kernel. At the moment, this compiler is a pro-
totype that supports basic functionalities of the Mod-
elica language. However, it does allow for a subset of
Modelica models to be used in the context of Tornado.
Since solutions already exist that generate flat Model-
ica from full Modelica (e.g., omc - the OpenModelica
Compiler), only the conversion from flat Modelica to

executable model code had to be implemented.
The sequel of this paper is structured as follows: Sec-
tion 2 and Section 3 respectively provide a further in-
troduction to Tornado and its complex virtual exper-
imentation capabilities. Subsequently, Section 4 ex-
plains how Modelica models can be used in Tornado.
Section 5 discusses two simple Modelica models for
which virtual experiments were run with Tornado. Fi-
nally, Section 6 contains some conclusions and refer-
ences to future work.

2 Tornado

The Tornado kernel for modelling and virtual experi-
mentation attempts to offer a compromise between the
computational efficiency of custom hard-coded (typ-
ically FORTRAN or C) model implementations and
the flexibility of less computationally efficient generic
tools such as MATLAB. In Tornado, hierarchical mod-
els are specified in high-level, declarative, object-
oriented modelling languages such as MSL [5] and -
since recently - also Modelica. From these high-level
specifications, efficient executable code is generated
by a model compiler. Using the dynamically-loadable
executable models generated by the model compiler,
Tornado allows for running a variety of so-calledvir-
tual experiments. Virtual experiments are the virtual-
world counterpart of real-world experiments, similar
to the way models relate to real-world systems. A
highly simplified conceptual diagram of Tornado is
shown in Figure 1.

Figure 1: Tornado Conceptual Diagram

The Tornado kernel relies on a flexible input provider
and output acceptor mechanism to deal with I/O for
virtual experiments. Input can be provided by any
combination of data files, internal data buffers and data

generators. Output will be accepted by any combina-
tions of data files, internal data buffers and plot han-
dles (Note: since Tornado is merely a kernel, it does
not have any data visualization interface of its own).
In order to allow for the kernel to be deployed in a di-
verse array of applications, it has been equipped with
multiple interfaces. Next to its native C++ interface,
Tornado currently also has a C, .NET and MATLAB
MEX interface (cf. Figure 2). The kernel is portable
across platforms and was designed according to the
three-tier principle. Most persistent representations
of information types are XML-based. The grammar
of these representations is expressed in XSD (XML
Schema Definition) format and mimics very closely
the internal representation of the respective types of
information. An interesting feature of Tornado is the
fact that it allows for dynamic loading of numerical
solvers for tasks such as integration, optimization and
Latin Hypercube Sampling. In order to support this
principle, a generalized framework has been set up [8].

Figure 2: Tornado-based Interfaces and Applications

Several applications (graphical and other) can be built
on top of Tornado. Examples include the next gener-
ation of the WESTR© [5] commercial modelling and
simulation tool for WWTP’s, its research-oriented
counterpart named EAST and DHI’s MOUSE-TRAP
(cf., http://www.dhigroup.com/Software/Urban.aspx).
However, the most direct way of using the kernel is
through the Tornado CUI (Command-line User Inter-
face) suite, which is a comprehensive set of tools that
is included with the kernel distribution. Full-fledged
graphical applications such as WESTR© are conceived
to be used by all types of users (expert, intermediate,
novice). The Tornado CUI suite however focuses on
experts only. Table 1 gives an overview of the most
commonly used command-line tools. The results dis-

cussed further in this paper were obtained through the
Tornado CUI suite.

Table 1:Tornado CUI Suite

Program Description

tbuild Compiles and links executable model code to a

dynamically-loadable binary object (.dll / .so)

tcreate Creates an empty XML description of a virtual

experiment

texec Executes virtual experiments described in XML

tinitial Dumps all model quantity values after initialization

tmsl Compiles a high-level MSL model to executable

model code

tobj Computes aggregation functions and other criteria

from simulation trajectories

tproject Manages sets of related experiments and

connection graphs

tsort Sorts a Tornado-generated data file

t2msl Converts a connection graph to MSL code

3 Complex Virtual Experimentation

Tornado consists of strictly separated modelling and
virtual experimentation environments. Virtual exper-
iments can either beatomic or compound. The lat-
ter are hierarchically structured whereas the first can-
not be further decomposed. Atomic experiment types
that are available in Tornado are dynamic simulation
and steady-state analysis. The most straightforward
types of compound experiments are optimization, sce-
nario analysis, Monte Carlo analysis (e.g.using Latin
Hypercube Sampling) and sensitivity analysis. More
convoluted types of compound experiments are also
available, such as combinations of scenario / Monte
Carlo analysis and optimization. Thanks to the object-
oriented nature of Tornado, new virtual experiment
types can easily be added. Several types of virtual ex-
periments are based on the computation of objective
values. As far as possible, the same set of objective
types is available for each objective-based experiment
type, thereby promoting orthogonality.
Given the hierarchical nature of compound virtual ex-
periments, computational complexity can be substan-
tial. Tornado therefore allows for coarse-grained grid-
ification of certain types of compound virtual experi-
ments. Supported distributed execution environments
include BIOMATH’s Typhoon cluster software [9] and
CERN’s LCG-2 grid middleware (cf., http://public.eu-

egee.org). Tornado generates generic job descriptions
for dynamic execution. Typhoon is capable of directly
interpreting these generic job descriptions, whereas for
LCG-2, an additional conversion step has to be ap-
plied.
Using Tornado’s powerful complex virtual experimen-
tation capabilities, large risk/cost/benefit analyses for
integrated water systems were carried out, including
Latin Hypercube Sampling from multi-dimensional
parameter spaces and the automated execution of
1,000’s of simulations [10], each requiring an average
of 0.5h of computation time.

4 Using Modelica Models in Tornado

In Tornado, executable models consist of two distinct
parts. The first part is represented in C and is made up
of the actual model equations, in addition to a number
of flat arrays containing data containers for parameters
and variables. The second part is a XML representa-
tion of meta-information,i.e., information regarding
names, descriptions, units, constraints, . . . of parame-
ters, variables and models. The relationship between
these hierarchically structured meta-information items
and the respective elements of the flat C arrays is
also expressed in XML. The availability of meta-
information in executable models allows for the latter
to be self-describing, which is a requirement given the
strict separation between modelling and experimenta-
tion in Tornado.
In the Tornado framework, model compilers are to
generate executable models in the format that was de-
scribed above. The MSL model compiler that is part
of the Tornado suite generates these executable mod-
els directly from MSL input. In the case of Mod-
elica however, the approach is two-phased. During
the first phase, the OpenModelica Compiler is used to
generate flat Modelica (.mof) from full Modelica in-
put (.mo). During the second phase, a new Tornado
CUI tool called mof2t is used to convert flat Mod-
elica to the Tornado executable model format. This
approach was mainly inspired by practical considera-
tions (lack of resources for the re-implementation of
the non-trivial full-to-flat Modelica conversion). At
the momentmof2tonly supports a subset of flat Mod-
elica.
For the development of themof2t compiler, the
same technologies and libraries were used as for
the remainder of the Tornado framework,i.e., C++,
flex/bison, and Elcel Technologies OpenTop (cf.,
http://www.elcel.com). Themof2t compiler nicely

completes the Tornado CUI suite, which in all consists
of approximately 20 tools. The relationship between
mof2tand the most important other CUI tools is de-
picted in Figure 3.

Figure 3: Relationship between the Main Tornado CUI
Tools

5 Examples

In this section, two simple cases are presented that il-
lustrate the use of Modelica models in Tornado. The
first case is based on the ubiquitousVan der Polsys-
tem, which is frequently found as an example in mod-
elling and simulation textbooks when stiff systems are
discussed. The second case is based on theARGESIM
- C1 simulator comparison. In both cases, results
were obtained using the Tornado CUI suite. Evidently,
when using Tornado through one of the GUI appli-
cations that it supports, most of the technical details
shown below are hidden from the user.

5.1 Van der Pol

5.1.1 Model

TheVan der Polsystem can be described in Modelica
as follows:

VanDerPol.mof:

fclass VanDerPol
Real x(start = 1.0);
Real y(start = 1.0);
parameter Real mu = 1;
equation

der(x) = y;
der(y) = -x + mu * (1.0 - x * x) * y;

end VanDerPol;

Given the fact that this model does not rely on inher-
itance nor decomposition, there is no difference be-
tween its full and flattened version. In order to gener-
ate executable code for Tornado and convert this code
into a dynamically-loadable object, themof2t and
tbuild CUI tools are to be used:

> mof2t VanDerPol.mof

Flat Modelica to Tornado Convertor (Build: Jun 23 2006)

I Loading license spec: Tornado.lic|.Tornado
I Checking MAC address...
I Starting executable model code generation...
I Executable model code generation ended
I Total execution time: 0 seconds

> tbuild -p win32-msvc7.1 VanDerPol

Tornado Model Builder (Build: Jun 23 2006)

I Loading license spec: Tornado.lic|.Tornado
I Checking MAC address...
I Starting build...
I Build ended
I Total execution time: 0 seconds

The executable C code and XML meta-information
that is generated bymof2t is as follows:

VanDerPol.c:

#include <math.h>
#include <stdlib.h>

#include "Tornado/EE/Common/DLL.h"
#include "Tornado/EE/MSLE/MSLE.h"

#define _mu_ pModel->Params[0]
#define _time_ pModel->IndepVars[0]
#define _x_ pModel->DerVars[0]
#define _D_x_ pModel->Derivatives[0]
#define _y_ pModel->DerVars[1]
#define _D_y_ pModel->Derivatives[1]

void ComputeInitial(struct TModel* pModel) {}

void ComputeState(struct TModel* pModel)
{

_D_x_ = _y_;
_D_y_ = -_x_ + _mu_ * (1 - _x_ * _x_) * _y_;

}

void ComputeOutput(struct TModel* pModel) {}

void ComputeFinal(struct TModel* pModel) {}

void* GetID() { return (void*)L"Tornado.MSLE.Model.VanDerPol"; }

void* Create()
{

struct TModel* pModel;

pModel = (struct TModel*)malloc(sizeof(struct TModel));

pModel->Type = L"ODE";

pModel->NoParams = 1;
pModel->NoIndepVars = 1;
pModel->NoInputVars = 0;
pModel->NoOutputVars = 0;
pModel->NoAlgVars = 0;
pModel->NoDerVars = 2;
pModel->NoDerivatives = 2;
pModel->NoPrevious = 0;
pModel->NoResidues = 0;
pModel->NoSolveSets = 0;
pModel->NoEvents = 0;

pModel->Params =
(double*)malloc(sizeof(double) * pModel->NoParams);

pModel->IndepVars =
(double*)malloc(sizeof(double) * pModel->NoIndepVars);

pModel->InputVars =
(double*)malloc(sizeof(double) * pModel->NoInputVars);

pModel->OutputVars =
(double*)malloc(sizeof(double) * pModel->NoOutputVars);

pModel->AlgVars =
(double*)malloc(sizeof(double) * pModel->NoAlgVars);

pModel->DerVars =
(double*)malloc(sizeof(double) * pModel->NoDerVars);

pModel->Derivatives =
(double*)malloc(sizeof(double) * pModel->NoDerivatives);

pModel->Previous =
(double*)malloc(sizeof(double) * pModel->NoPrevious);

pModel->Residues =
(double*)malloc(sizeof(double) * pModel->NoResidues);

pModel->SolveSets =
(TSolveSetP)malloc(sizeof(struct TSolveSet) *

pModel->NoSolveSets);
pModel->Events =

(TEventP)malloc(sizeof(struct TEvent) * pModel->NoEvents);

pModel->ComputeInitial = ComputeInitial;
pModel->ComputeState = ComputeState;
pModel->ComputeOutput = ComputeOutput;
pModel->ComputeFinal = ComputeFinal;

return (void*)pModel;
}

VanDerPol.SymbModel.xml:

<Tornado>

<Model>
<Exec FileName="VanDerPol"/>
<Symb>

<Model Name="">
<Params>

<Param Name="mu" DefaultValue="1"/>
</Params>
<IndepVars>

<IndepVar Name="time" DefaultValue="0"/>
</IndepVars>
<InputVars>
</InputVars>
<OutputVars>
</OutputVars>
<AlgVars>
</AlgVars>
<DerVars>

<DerVar Name="x" DefaultValue="1"/>
<DerVar Name="y" DefaultValue="1"/>

</DerVars>
<Models>
</Models>

</Model>
</Symb>
<Links>

<Link Name=".mu" ValueType="Params" ValueIndex="0"/>
<Link Name=".time" ValueType="IndepVars" ValueIndex="0"/>
<Link Name=".x" ValueType="DerVars" ValueIndex="0"

DerivativeType="Derivatives" DerivativeIndex="0"/>
<Link Name=".y" ValueType="DerVars" ValueIndex="1"

DerivativeType="Derivatives" DerivativeIndex="1"/>
</Links>

</Model>
</Tornado>

The exact semantics of these representations are be-
yond the scope of this paper and will therefore not be
further discussed. Important to note however is that
the format of the generated C code has been kept as
simple as possible in order to be able to compile the
code with as many C compilers as possible. The com-
pilers that have been shown to work so far are Borland
C++ 5.5, MS Visual C++ 6.0, 7.1 & 8.0, LCC, INTEL
C++ 9.0 and g++.

5.1.2 Simulation

In order to simulate the generated model code, a sim-
ulation experiment spec is to be provided to the exper-

iment executor. Specs must conform to the respective
XML schemas that have been defined in the scope of
Tornado. When using the Tornado CUI suite, empty
specs can be generated by thetcreate program
and must then be further completed manually. Below
is a simulation experiment spec for theVan der Pol
model that was generated by invokingtcreate -t
Simul VanDerPol and further completed through
manual editing:

VanDerPol.Simul.Exp.xml:

<Tornado>

<Exp Version="1.0" Type="Simul">
<Props>

<Prop Name="Author" Value="PCFC1\fc"/>
<Prop Name="Date" Value="Wed Jun 28 14:58:02 2006"/>
<Prop Name="Desc" Value="Van der Pol simulation"/>
<Prop Name="FileName"

Value="VanDerPol.Simul.Exp.xml|.Tornado"/>
<Prop Name="UnitSystem" Value=""/>

</Props>
<Simul>

<Model Name="VanDerPol" CheckBounds="false">
<Quantities>

<Quantity Name=".mu" Value="100"/>
<Quantity Name=".x" Value="2"/>

</Quantities>
</Model>
<Inputs Enabled="false">
</Inputs>
<Outputs Enabled="true">

<Output Name="*Calc*">
<CalcVars Enabled="false">
</CalcVars>

</Output>
<Output Name="*Plot*">

<Plot Enabled="false">
<Props>

<Prop Name="CommInt" Value="0"/>
<Prop Name="Info" Value=""/>
<Prop Name="Interpolated" Value="false"/>
<Prop Name="StartTime" Value="-INF"/>
<Prop Name="StopTime" Value="+INF"/>
<Prop Name="UseDisplayUnits" Value="true"/>

</Props>
<Quantities>
</Quantities>

</Plot>
</Output>
<Output Name="File">

<File Name="VanDerPol.Simul.out.txt" Enabled="true">
<Props>

<Prop Name="CommInt" Value="0"/>
<Prop Name="CommIntType" Value="Linear"/>
<Prop Name="DecSep" Value="."/>
<Prop Name="Interpolated" Value="false"/>
<Prop Name="Precision" Value="8"/>
<Prop Name="StartTime" Value="-INF"/>
<Prop Name="StopTime" Value="+INF"/>
<Prop Name="UseDisplayUnits" Value="true"/>

</Props>
<Quantities>

<Quantity Name=".x"/>
<Quantity Name=".y"/>

</Quantities>
</File>

</Output>
</Outputs>
<Time>

<Start Value="0"/>
<Stop Value="300"/>

</Time>
<Solve>

<Integ Method="CVODE">
<Props>

<Prop Name="AbsoluteTolerance" Value="1e-006"/>
<Prop Name="CVBandLowerBandwidth" Value="0"/>
<Prop Name="CVBandUpperBandwidth" Value="0"/>
<Prop Name="CVSPGMRGSType" Value="ModifiedGS"/>
<Prop Name="IterationMethod" Value="Newton"/>
<Prop Name="LinearMultistepMethod" Value="BDF"/>
<Prop Name="LinearSolver" Value="Diag"/>
<Prop Name="MaxNoSteps" Value="0"/>
<Prop Name="RelativeTolerance" Value="1e-005"/>

</Props>
</Integ>

</Solve>
</Simul>

</Exp>
</Tornado>

For a simulation experiment, XML specs basically
allow for specifying initial values (hereby overrul-
ing initializations that were specified through the
model’s meta-information), defining input providers
/ output acceptors, specifying the simulation start /
stop time and configuring integrator solver settings.
In this case, initial values were given for.mu and
.x , input was disabled and one output file accep-
tor was defined. The simulation will be run from
0 to 300 and the CVODE stiff system solver (cf.,
http://www.llnl.gov/CASC/sundials) will be used as
an integrator. Important to note is that the settings
of the CVODE integrator are given through a flexible
attribute-value pair mechanism instead of through tags
that are part of the XML grammar. This is required to
support dynamic loading of solver plugins. The frag-
ment below shows the output of the experiment execu-
tor, when applied to theVanDerPolsimulation spec.
One will notice that before execution starts, a number
of solver plugins are dynamically loaded (in this case
only a subset of the 35 solver plugins that are provided
with Tornado are loaded):

> texec VanDerPol.Simul.Exp.xml

Tornado Experiment Executor (Build: Jun 13 2006)

I Loading license spec: Tornado.lic|.Tornado
I Checking MAC address...
I Loading main spec: Tornado.Main.xml|.Tornado
I Loading plugin: Tornado.Solve.Integ.CVODE
I Loading plugin: Tornado.Solve.Integ.Euler
I Loading plugin: Tornado.Solve.Integ.RK4
I Loading plugin: Tornado.Solve.Integ.RK4ASC
I Loading plugin: Tornado.Solve.Optim.GA
I Loading plugin: Tornado.Solve.Optim.Praxis
I Loading plugin: Tornado.Solve.Optim.SA
I Loading plugin: Tornado.Solve.Optim.Simplex
I Loading plugin: Tornado.Solve.Root.Broyden
I Loading plugin: Tornado.Solve.Root.Hybrid
I Loading plugin: Tornado.Solve.Scen.Cross
I Loading plugin: Tornado.Solve.Scen.Fixed
I Loading plugin: Tornado.Solve.Scen.Grid
I Loading plugin: Tornado.Solve.Scen.Plain
I Loading plugin: Tornado.Solve.Scen.Random
I Loading plugin: Tornado.Solve.Sens.Plain
I Loading plugin: Tornado.Solve.CI.Nelder
I Loading plugin: Tornado.Solve.CI.Richardson
I Loading plugin: Tornado.Solve.MC.IHS
I Loading plugin: Tornado.Solve.MC.CVT
I Loading plugin: Tornado.Solve.MC.LHS
I Loading plugin: Tornado.Solve.MC.PR
I Main information:
I Author = PCFC1\fc
I Date = Thu Oct 13 16:08:06 2005
I Desc = Main spec
I EnableHashOutputHeaders = true
I EnableWESTInputHeaders = true
I EnableWESTOutputHeaders = false
I FileName =
I KernelAuthor = Filip Claeys, Dirk De Pauw
I KernelDesc = Advanced Kernel for Modelling and Virtual Ex...
I KernelVersion = 0.22
I LimitMRE = 0.7
I LimitSRE = 0.0235
I Precision = 8
I New job: VanDerPol.Simul.Exp.xml
I Starting thread...
I Loading experiment spec: VanDerPol.Simul.Exp.xml|.Tornado
I Loading simulation experiment spec: VanDerPol.Simul.Exp.xml...
I Loading symbolic model spec: VanDerPol.SymbModel.xml|.Tornado
I Loading executable model: Tornado.MSLE.Model.VanDerPol
I Executable model information:
I Type = ODE
I #Params = 1
I #IndepVars = 1
I #InputVars = 0
I #OutputVars = 0
I #AlgVars = 0

I #DerVars = 2
I #Derivatives = 2
I #Previous = 0
I #Residues = 0
I #SolveSets = 0
I #Events = 0
I Building model symbol table...
I Checking model linkage...
I Creating simulator...
I Setting integration solver: Tornado.Solve.Integ.CVODE
I Experiment information:
I Type = Simul
I Embedded = true
I Author = PCFC1\fc
I Date = Wed Jun 28 14:58:02 2006
I Desc = Van der Pol simulation experiment
I FileName = VanDerPol.Simul.Exp.xml|.Tornado
I UnitSystem =
I Initializing model...
I Opening simulation output file: VanDerPol.Simul.out.txt
I Simulation from 0 to 300
I Starting simulation...
I Simulation ended
I Closing simulation output file: VanDerPol.Simul.out.txt
I Executable model statistics:
I #ComputeInitials: 1
I #ComputeStates: 3240
I #ComputeOutputs: 1686
I #ComputeFinals: 1
I Total execution time: 0 seconds
I Thread ended
I Unloading plugins

The Tornado CUI suite does not contain any data visu-
alization mechanism, however one can easily use tools
such as MS Excel, MATLAB or GNUPlot to display
the simulated trajectories. Figure 4 shows the result of
invoking the following commands in GNUPlot:

set xlabel "t"
set ylabel ".x"
plot ’VanDerPol.Simul.out.txt’ using 1:2 with lines

Figure 4: Van Der Pol for .mu = 100

5.1.3 Parameter variation

More interesting it becomes if we wish to run the same
simulation for different initial values. For instance,
suppose we wish to run the simulation for values of
.muthat are logarithmically spaced between 1 and 100
with a spacing of 2. Suppose also that for each simu-
lation, we want to determine the maximum value and

standard deviation of the trajectory of.y, in addition to
the value of.y at t = 50. The scenario analysis experi-
ment shown below provides a solution to this problem:

VanDerPol.Scen.Exp.xml:

<Tornado>

<Exp Version="1.0" Type="Scen">
<Props>

<Prop Name="Author" Value="PCFC1\fc"/>
<Prop Name="Date" Value="Wed Jun 28 15:37:57 2006"/>
<Prop Name="Desc" Value="VanDerPol scenario analysis"/>
<Prop Name="FileName"

Value="VanDerPol.Scen.Exp.xml|.Tornado"/>
<Prop Name="UnitSystem" Value=""/>

</Props>
<Scen>

<Obj>
<Exp Version="1.0" Type="Simul"

FileName="VanDerPol.Simul.Exp.xml|.Tornado"/>
<Props>

<Prop Name="CommInt" Value="0"/>
<Prop Name="DecSep" Value="."/>
<Prop Name="EnableNoComputeStates" Value="false"/>
<Prop Name="EnableRetrieval" Value="false"/>
<Prop Name="EnableStorage" Value="true"/>
<Prop Name="Interpolated" Value="false"/>
<Prop Name="OutputFileName"

Value="VanDerPol.Scen.Simul.out.txt.{}"/>
<Prop Name="Precision" Value="8"/>
<Prop Name="ThousandSep" Value=","/>
<Prop Name="TyphoonBaseName" Value="Typhoon"/>

</Props>
<Quantities>

<Quantity Name=".y">
<Props>

<Prop Name="Criterion" Value="AbsSquared"/>
<Prop Name="EnableAvg" Value="false"/>
<Prop Name="EnableDiffMax" Value="false"/>
<Prop Name="EnableDiffSum" Value="false"/>
<Prop Name="EnableEndValue" Value="false"/>
<Prop Name="EnableInt" Value="false"/>
<Prop Name="EnableMax" Value="true"/>
<Prop Name="EnableMin" Value="false"/>
<Prop Name="EnableStdDev" Value="true"/>
<Prop Name="EnableTIC" Value="false"/>
<Prop Name="EnableValueOnTime" Value="true"/>
<Prop Name="Time" Value="50"/>
<Prop Name="Weighted" Value="false"/>

</Props>
</Quantity>

</Quantities>
</Obj>
<Log Name="VanDerPol.Scen.log.txt" Enabled="true">

<Props>
</Props>

</Log>
<Inputs Enabled="false">
</Inputs>
<Outputs Enabled="true">

<Output Name="*File*">
<File Name="VanDerPol.Scen.out.txt" Enabled="true">

<Props>
<Prop Name="DecSep" Value="."/>
<Prop Name="Precision" Value="8"/>

</Props>
</File>

</Output>
<Output Name="*Plot*">

<Plot Enabled="false">
<Props>

<Prop Name="Info" Value=""/>
</Props>

</Plot>
</Output>

</Outputs>
<Vars>

<Var Name=".mu">
<Props>

<Prop Name="DistributionMethod" Value="Logarithmic"/>
<Prop Name="LowerBound" Value="1"/>
<Prop Name="NoValues" Value="0"/>
<Prop Name="RefValue" Value="1"/>
<Prop Name="Spacing" Value="2"/>
<Prop Name="StdDev" Value="0"/>
<Prop Name="UpperBound" Value="100"/>
<Prop Name="UpperBoundPolicy"

Value="IncludeUpperBound"/>
<Prop Name="Values" Value=""/>

</Props>
</Var>

</Vars>
<Solve>

<Scen Method="Grid">
<Props>

<Prop Name="EnableRef" Value="false"/>
<Prop Name="Generate" Value="true"/>

<Prop Name="UseTyphoon" Value="false"/>
</Props>

</Scen>
</Solve>

</Scen>
</Exp>

</Tornado>

As one can see, this scenario analysis spec refers
to a simulation spec that resides in an external file
(VanDerPol.Simul.Exp.xml). Directly embedding the
XML content of this file into the scenario analysis
experiment is however also possible. One will also
notice that other types of objectives and aggregation
functions (next to theMin, StdDev, ValueOnTimefunc-
tions that are needed for our application) such asAvg
(average) andInt (integral) are also possible. Table 2
shows the contents of theVanDerPol.Scen.out.txtfile
that is generated during the execution of the scenario
analysis.

Table 2: Results of the VarDerPol.Scen.Exp.xml Experi-
ment

RunNo .mu Max(.y) StdDev(.y) ValueOnTime(.y)

1 1 2.6865596 1.4272097 -1.5137494

2 2 3.8300373 1.4645402 -0.034409599

3 4 6.3463996 1.5316644 0.58337344

4 8 11.553678 1.593544 -0.092195286

5 16 22.097001 1.6317544 0.058550465

6 32 43.305241 1.6404037 0.052380761

7 64 85.828672 1.5529595 -0.0439915

8 100 133.68028 1.4986709 -0.010200556

5.2 ARGESIM - C1

ARGE Simulation News (cf., http://www.argesim.org)
is a non-profit working group providing the infras-
tructure and adminstration for dissemination of infor-
mation on modelling and simulation in Europe. AR-
GESIM is located at Vienna University of Technology,
Dept. Simulation and publishes Simulation News Eu-
rope (SNE), which features a series on comparisons of
simulation software. Based on simple, easily compre-
hensible models special features of modelling and ex-
perimentation within simulation languages, also with
respect to an application area, are compared. Fea-
tures are, for instance: modelling technique, event-
handling, numerical integration, steady-state calcula-
tion, distribution fitting, parameter sweep, output anal-
ysis, animation, complex logic strategies, submodels,
macros, statistical featuresetc. Approximately 20
comparisons have thusfar been defined, the first was

published in November 1990, the last in December
2005.

5.2.1 Model

As a second example of the use of Modelica models in
Tornado, theC1 ARGESIMcomparison will be used.
The model that is at the basis of this comparison can
be represented in Modelica as follows:

C1.mof:

fclass C1

parameter Real kr = 1;
parameter Real kf = 0.1;
parameter Real lf = 1000;
parameter Real dr = 0.1;
parameter Real dm = 1;
parameter Real p = 0;
Real f(start = 9.975);
Real m(start = 1.674);
Real r(start = 84.99);

equation
der(r) = -dr * r + kr * m * f;
der(m) = dr * r - dm * m + kf * f * f - kr * m * f;
der(f) = dr * r + 2 * dm * m - kr * m * f -

2 * kf * f * f - lf * f + p;
end C1;

The comparison requires the following tasks to be per-
formed:

• Simulation of the stiff system over [0,10].

• Parameter variation of lf from 1.0e2 to 1.0e4 and
a plot of all f(t; lf), logarithmic steps preferred.

• Calculation of steady states during constant bom-
bardment (p(t) = pc = 1.0E4) and without bom-
bardment (p(t) = 0).

5.2.2 Simulation

As in the first example, a dynamically-loadable ex-
ecutable model for Tornado can be generated using
mof2t and tbuild . Afterwards, an empty simula-
tion experiment can be generated withtcreate and
then be completed through manual editing:

C1.Simul.Exp.xml:

<Tornado>

<Exp Version="1.0" Type="Simul">
<Props>

<Prop Name="Author" Value="PCFC1\fc"/>
<Prop Name="Date" Value="Fri Jun 30 12:28:12 2006"/>
<Prop Name="Desc" Value=""/>
<Prop Name="FileName"

Value="C1.CVODE.Simul.Exp.xml|.Tornado"/>
<Prop Name="UnitSystem" Value=""/>

</Props>
<Simul>

<Model Name="C1" CheckBounds="false">
<Quantities>
</Quantities>

</Model>
<Inputs Enabled="false">
</Inputs>
<Outputs Enabled="true">

<Output Name="*Calc*">
<CalcVars Enabled="false">
</CalcVars>

</Output>
<Output Name="*Plot*">

<Plot Enabled="false">
<Props>

<Prop Name="CommInt" Value="0"/>
<Prop Name="Info" Value=""/>
<Prop Name="Interpolated" Value="false"/>
<Prop Name="StartTime" Value="-INF"/>
<Prop Name="StopTime" Value="+INF"/>
<Prop Name="UseDisplayUnits" Value="true"/>

</Props>
<Quantities>
</Quantities>

</Plot>
</Output>
<Output Name="File">

<File Name="C1.Simul.out.txt" Enabled="true">
<Props>

<Prop Name="CommInt" Value="1.2"/>
<Prop Name="CommIntType" Value="Logarithmic"/>
<Prop Name="DecSep" Value="."/>
<Prop Name="Interpolated" Value="true"/>
<Prop Name="Precision" Value="8"/>
<Prop Name="StartTime" Value="1e-007"/>
<Prop Name="StopTime" Value="+INF"/>
<Prop Name="UseDisplayUnits" Value="true"/>

</Props>
<Quantities>

<Quantity Name=".f"/>
<Quantity Name=".m"/>
<Quantity Name=".r"/>

</Quantities>
</File>

</Output>
</Outputs>
<Time>

<Start Value="0"/>
<Stop Value="10"/>

</Time>
<Solve>

<Integ Method="CVODE">
<Props>

<Prop Name="AbsoluteTolerance" Value="1e-006"/>
<Prop Name="CVBandLowerBandwidth" Value="0"/>
<Prop Name="CVBandUpperBandwidth" Value="0"/>
<Prop Name="CVSPGMRGSType" Value="ModifiedGS"/>
<Prop Name="IterationMethod" Value="Functional"/>
<Prop Name="LinearMultistepMethod" Value="Adams"/>
<Prop Name="LinearSolver" Value="Dense"/>
<Prop Name="MaxNoSteps" Value="0"/>
<Prop Name="RelativeTolerance" Value="1e-006"/>

</Props>
</Integ>
<Root Method="Broyden">

<Props>
<Prop Name="MaxNoSteps" Value="0"/>
<Prop Name="MaxStepSize" Value="1"/>

</Props>
</Root>

</Solve>
</Simul>

</Exp>
</Tornado>

Important to notice in this simulation experiment is
that for the output file acceptor, the communication in-
terval type (CommIntType) was set to logarithmic. In
this case, logarithmic spacing of output timepoints is
required in order to be able to accurately represent the
dynamics of the simulated trajectories during the ini-
tial phase of the simulation (without generating huge
amounts of irrelevant data). After running the simula-
tion with texec , one could for instance use GNUPlot
to display the results (see Figure 5) onto logarithmic
axes using the following commands:
set logscale xy
set xlabel "t"
set ylabel ".f"
plot ’C1.Simul.out.txt’ using 1:2 with lines

5.2.3 Parameter variation

The parameter variation that is requested by the com-
parison can easily be implemented in Tornado us-

Figure 5: Simulation results for the ARGESIM C1
model

ing the scenario analysis experiment type. However,
in contrast to theVan der Pol example, no post-
processing functions (such asMin, StdDev, . . .) are
needed in this case. Important however is that the vari-
ation of .lf is to be set toLogarithmic, as requested.
Figure 6 shows the results of a 10-shot scenario analy-
sis experiment defined in this way.

Figure 6: Scenario analysis results for the ARGESIM
C1 model

5.2.4 Calculation of steady states

For the calculation of steady states, the steady-state
(SS) experiment type can be used. In Tornado, the
steady-state of a system is directly computed through
the application of a root finding solver to the system
equations, where the derivatives (i.e., the left hand
sides) of state equations are used as residues (that are
to be brought to zero).

The following describes a steady-state experiment for
theARGESIM C1model wherep = 1e4:

C1.p=1e4.SS.Exp.xml:

<Tornado>

<Exp Version="1.0" Type="SS">
<Props>

<Prop Name="Author" Value="PCFC1\fc"/>
<Prop Name="Date" Value="Fri Jun 30 15:39:27 2006"/>
<Prop Name="Desc" Value=""/>
<Prop Name="FileName" Value="C1.p=1e4.SS.Exp.xml|.Tornado"/>
<Prop Name="UnitSystem" Value=""/>

</Props>
<SS>

<Model Name="C1" CheckBounds="false">
<Quantities>

<Quantity Name=".p" Value="1e4"/>
</Quantities>

</Model>
<Solve>

<Root Method="Hybrid">
<Props>

<Prop Name="Tolerance" Value="1e-008"/>
</Props>

</Root>
</Solve>

</SS>
</Exp>

</Tornado>

Execution of this experiment withtexec will in-
stantly yield the correct steady state values for.f, .m
and.r :

> texec "C1.p=1e4.SS.Exp.xml"

Tornado Experiment Executor (Build: Jun 13 2006, 10:32:40)

I Loading license spec: Tornado.lic|.Tornado
I Checking MAC address...
I Loading main spec: Tornado.Main.xml|.Tornado
I Loading plugin: Tornado.Solve.Integ.CVODE
I Loading plugin: Tornado.Solve.Integ.Euler
I Loading plugin: Tornado.Solve.Integ.RK4
I Loading plugin: Tornado.Solve.Integ.RK4ASC
I Loading plugin: Tornado.Solve.Optim.GA
I Loading plugin: Tornado.Solve.Optim.Praxis
I Loading plugin: Tornado.Solve.Optim.SA
I Loading plugin: Tornado.Solve.Optim.Simplex
I Loading plugin: Tornado.Solve.Root.Broyden
I Loading plugin: Tornado.Solve.Root.Hybrid
I Loading plugin: Tornado.Solve.Scen.Cross
I Loading plugin: Tornado.Solve.Scen.Fixed
I Loading plugin: Tornado.Solve.Scen.Grid
I Loading plugin: Tornado.Solve.Scen.Plain
I Loading plugin: Tornado.Solve.Scen.Random
I Loading plugin: Tornado.Solve.Sens.Plain
I Loading plugin: Tornado.Solve.CI.Nelder
I Loading plugin: Tornado.Solve.CI.Richardson
I Loading plugin: Tornado.Solve.MC.IHS
I Loading plugin: Tornado.Solve.MC.CVT
I Loading plugin: Tornado.Solve.MC.LHS
I Loading plugin: Tornado.Solve.MC.PR
I Main information:
I Author = PCFC1\fc
I Date = Thu Oct 13 16:08:06 2005
I Desc = Main spec
I EnableHashOutputHeaders = true
I EnableWESTInputHeaders = true
I EnableWESTOutputHeaders = false
I FileName =
I KernelAuthor = Filip Claeys, Dirk De Pauw
I KernelDesc = Advanced Kernel for Modelling and Virtual...
I KernelVersion = 0.22
I LimitMRE = 0.7
I LimitSRE = 0.0235
I Precision = 8
I New job: C1.p=1e4.SS.Exp.xml
I Starting thread...
I Loading experiment spec: C1.p=1e4.SS.Exp.xml|.Tornado
I Loading steady-state analysis experiment spec: C1.p=1e4...
I Loading symbolic model spec: C1.SymbModel.xml|.Tornado
I Loading executable model: Tornado.MSLE.Model.C1
I Executable model information:
I Type = ODE
I #Params = 6
I #IndepVars = 1
I #InputVars = 0
I #OutputVars = 0
I #AlgVars = 0
I #DerVars = 3
I #Derivatives = 3

I #Previous = 0
I #Residues = 0
I #SolveSets = 0
I #Events = 0
I Building model symbol table...
I Checking model linkage...
I Creating steady-state analyser...
I Setting root solver: Tornado.Solve.Root.Hybrid
I Experiment information:
I Type = SS
I Embedded = true
I Author = PCFC1\fc
I Date = Fri Jun 30 15:39:27 2006
I Desc =
I FileName = C1.p=1e4.SS.Exp.xml|.Tornado
I UnitSystem =
I Initializing model...
I Initializing model...
I Starting steady-state analysis...
I Steady-state analysis ended
I Executable model statistics:
I #ComputeInitials: 8
I #ComputeStates: 8
I #ComputeOutputs: 0
I #ComputeFinals: 0
I Final variable values:
I .f = 10
I .m = 10
I .r = 1000
I Total execution time: 0 seconds
I Thread ended
I Unloading plugins

Forp = 0, one can proceed in a similar way. However,
in this case the process is more sensitive to the ini-
tial value of the state variables. The experiment below
therefore shows that for.f, a differing initial value had
to be chosen to ensure convergence of the algorithm.

C1.p=0.SS.Exp.xml|.Tornado:

<Tornado>

<Exp Version="1.0" Type="SS">
<Props>

<Prop Name="Author" Value="PCFC1\fc"/>
<Prop Name="Date" Value="Fri Jun 30 15:39:20 2006"/>
<Prop Name="Desc" Value=""/>
<Prop Name="FileName" Value="C1.p=0.SS.Exp.xml|.Tornado"/>
<Prop Name="UnitSystem" Value=""/>

</Props>
<SS>

<Model Name="C1" CheckBounds="false">
<Quantities>

<Quantity Name=".f" Value="0.1"/>
</Quantities>

</Model>
<Solve>

<Root Method="Hybrid">
<Props>

<Prop Name="Tolerance" Value="1e-008"/>
</Props>

</Root>
</Solve>

</SS>
</Exp>

</Tornado>

...
I Fri Jun 30 15:59:44 2006 Final variable values:
I Fri Jun 30 15:59:44 2006 .f = 0
I Fri Jun 30 15:59:44 2006 .m = 0
I Fri Jun 30 15:59:44 2006 .r = -2.47032822920623e-323
I Fri Jun 30 15:59:44 2006 Total execution time: 0 seconds
...

6 Conclusions and Future Work

Through the development of themof2tcompiler, Tor-
nado’s powerful complex virtual experimentation ca-
pabilities have become available for a subset of Mod-
elica models. To facilitate maintenance and further in-
tegration,mof2twas implemented using the same tech-
nologies as the remainder of the Tornado framework.

In the forthcoming months, themof2twill be further
stabilized and enhanced.

Acknowledgement

Peter A. Vanrolleghem is Canadian Research Chair in
Water Quality Modelling.

References
[1] F. Claeys, D. De Pauw, L. Benedetti, I. Nopens, and P.A. Vanrol-

leghem. Tornado: A versatile efficient modelling & virtual exper-
imentation kernel for water quality systems. InProceedings of the
iEMSs 2006 Conference, Burlington, VT, 2006.

[2] P. Reichert, Borchardt D., Henze M., Rauch W., Shanahan P.,
Somlýody L., and P.A. Vanrolleghem.River Water Quality Model
No.1. Scientific and Technical Report No.12. IWA Publishing, Lon-
don, UK, 2001.

[3] M. Henze, W. Gujer, T. Mino, and M. van Loosdrecht.Activated
Sludge Models ASM1, ASM2, ASM2d, and ASM3. Scientific and
Technical Report No.9. IWA Publishing, London, UK, 2000.

[4] J.B. Copp, editor.The COST simulation benchmark. European Com-
mission, 2002.

[5] H. Vanhooren, J. Meirlaen, Y. Amerlinck, F. Claeys, H. Vangheluwe,
and P.A. Vanrolleghem. WEST: modelling biological wastewater
treatment.Journal of Hydroinformatics, 5(1):27–50, 2003.

[6] P. Fritzson.Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1. Wiley-IEEE Press, February 2004.

[7] H. Vangheluwe, F. Claeys, S. Kops, F. Coen, and G.C. Vansteenkiste.
A modelling simulation environment for wastewater treatment plant
design. InProceedings of the 1996 European Simulation Symposium,
Genoa, Italy, October 24-26 1996.

[8] F.H.A Claeys, P.A. Vanrolleghem, and P. Fritzson. A generalized
framework for abstraction and dynamic loading of numerical solvers.
In Proceedings of the 2006 European Modeling and Simulation Sym-
posium, Barcelona, Spain, 2006.

[9] F. Claeys, M. Chtepen, L. Benedetti, B. Dhoedt, and P.A. Vanrol-
leghem. Distributed virtual experiments in water quality manage-
ment.Water Science and Technology, 53(1):297–305, 2006.

[10] L. Benedetti, D. Bixio, F. Claeys, and P.A. Vanrolleghem. A model-
based methodology for benefit/cost/risk analysis of wastewater sys-
tems. InProceedings of the iEMSs 2006 Conference, Burlington,
VT, 2006.

