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Models currently used have been developed to describe the storage response in the activated

sludge process. In these models the distribution of the substrate flux between growth and

storage is an empirical function. rRNA-structured biomass models are proposed to describe the

metabolic status of cells in view of predicting the growth response (dm/dt) of cells in activated

sludge process. The autocatalytic reaction rate of the synthesis of the PSS component (rRNA)

can provide a mechanistic explanation for the growth response and the growth lag phase.

The proposed models were able to describe and predict properly the growth response of the

biomass in various types of reactor. Such models could be more widely applicable by using

intrinsic model parameters. This would be a key improvement for as it would lead to improved

models for design.
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INTRODUCTION

Overview of models and structuring in the models

Daigger & Grady (1982a) were the first authors to propose

a structured approach to model the metabolic status of

the biomass in activated sludge processes. They noted that

the inputs to most wastewater treatment systems are time-

variant, indicating that steady-states are seldom achieved.

Consequently, realistic prediction of the performance of

biochemical unit processes requires that the dynamic

response of the microbial culture be considered. They

divided the transient phenomena into two general classes;

the storage response and the growth response.

Since then, various models have been developed to

describe the storage response in the activated sludge process.

The main ones include the IWA Activated Sludge Model

No. 2d (ASM2d), ASM3 (Henze et al. 2000), ASM3-BioP

(Ky et al. 2001;Rieger et al. 2001) and TUDelft model (TUDP)

(van Veldhuizen et al. 1999).

For all these models, the values of the kinetic para-

meters are typically site-specific and calibration is usually

required for accurate description of the actual process

under study (Gernaey et al. 2004). Usually and fortunately,

the calibration effort is limited to a few key parameters and

some steps in the calibration procedure can be omitted

depending on the aims (Gernaey et al. 2004).

In ASM, the biomass is separated into micro-organisms

and different storage compounds. It is assumed that the
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various intracellular fractions (but storage) of the micro-

organisms does not change according to the pseudo steady

state hypothesis.

However, when the conditions in the process signifi-

cantly change, the level of intracellular components as well

as the rates and the metabolic status of bacterial cells will

change. Hence, one pseudo steady state can not describe

the old and the new situations. Then, recalibration of the

kinetic parameters involved is usually required for accurate

description of the process exposed to the new operational

conditions or for accurate description of the new process

configuration (van Loosdrecht & Heijnen 2002; Gernaey

et al. 2004).

The simplifications adopted in conceptual models of the

metabolism are dependent on the experimental methods

used to determine the parameters value, and therefore

the conceptual models are empirical by nature and the

parameters value are often site specific. Due to the site-

specific nature of the calibration procedure, the parameters

have been denoted as extant as opposed to universal

parameters that would be intrinsic (Grady et al. 1996).

By introducing the extant/intrinsic nomenclature, Grady

et al. speculated that most parameters are extant because

the models fail to consider the metabolic status of the

bacterial biomass, suggesting that considering the metab-

olism could allow the development of more widely

applicable (intrinsic) model parameters. It appears that

the metabolic status of the cell can be partly captured by

considering the level of rRNA per cell (Daigger &

Grady 1982a).

Consequently, RNA-based models have been developed

to describe the metabolic status of cells in view of

performing simulations of the microbial adaptation and

growth response of cells. Using a simplified RNA-based

model, van Loosdrecht & Heijnen (2002) showed the

overall trends of the model output for various values of

specific enzyme (RNA) decay rates and operational con-

ditions in an SBR. The simulation showed that the

parameters had only a limited influence, but also that the

model correctly predicted the PHB fractions and growth

rates under various sludge retention times.

More recently, two quite similar approaches have been

suggested to use molecular data for better description of

transient behavior. A first approach uses stoichiometric

modelling involving a carbon mass balance and RNA-based

molecular techniques to model PHB accumulation and

growth of biomass in SBR’s (Frigon et al., submitted). The

second one uses dynamic modelling involving a COD mass

balance and DNA molecular techniques to model the

transients induced by substrate pulses and batch exper-

iments with high initial substrate to biomass ratio (Lavallée

et al. in preparation). Both approaches proposed similar

structures.

The discussion in this paper aims to expose these works

in progress in order to extend the application range of

the ASMs and TUDP to different processes configurations

or to different steady states (including the modelling

of the transient from one steady state to the other) without

the need for recalibration. The objective is not to cali-

brate the models on a particular data set, but to indicate

when a RNA-structured biomass model is needed.

SCOPE AND OBJECTIVES OF rRNA-STRUCTURED

BIOMASS MODELS

Faced with different problems of the kind presented above,

various authors attempted to develop model in which they

structured the biomass COD in specific pools and specifi-

cally described the COD conversion between these pools.

A survey of activated sludge structured-biomass models

indicates the following specific objectives for the developed

models:

† implementing a fundamental metabolic yield coefficients

(the ATP/NADH2 ratio in the oxidative phosphoryl-

ation) (Smolders et al. 1994; Beun et al. 2000; Dicks et al.

2001)

† predicting transient conditions under the dynamic

conditions of activated sludge processes or batch tests

(Daigger & Grady 1982b; Smolders et al. 1995a, 1995b;

Grady et al. 1996; Beun et al. 2000; Lavallée et al. 2002;

Vanrolleghem et al. 2004; Frigon et al. 2006)

† predicting microbial activities in different processes

(Oerther et al. 2001; Frigon et al. 2002a; 2002b; Stroot

et al. 2005; Simpson et al. 2006)

† interfacing with microbial population dynamics results

obtained by molecular techniques (Frigon et al. 2006;

Gilbride et al. 2006)
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RNA-based models have been developed with all these

specific objectives in prospect.

Stoichiometric modelling used to describe yields, and

kinetic modelling used to describe dynamics, are two basic

aspects of modelling. Though not independent, the con-

siderations for both modelling approaches invoke different

aspects of microbial metabolism and the contribution and

promises of these two approaches will be described sepa-

rately. rRNA models proposed by the authors include struc-

tured descriptions of the metabolism in both approaches.

STOICHIOMETRIC MODELLING

The approach proposed by the group at the Technical

University of Delft was to model the EBPR microbial

activity by describing the stoichiometry of the specific

metabolic pathways involved. This metabolic description

has the benefit of adding constraints to the model solution

space by linking pathways through the production or

consumption of energy (ATP) and reducing equivalent

carriers (NADH). The external observed yield coefficients

for different cellular fractions are all dependent on one

metabolic yield coefficient: the oxygen (or NADH2) to ATP

ratio. Consequently, assuming that the carriers do not

accumulate in bacterial cells allows the expression of the

substrate consumption and intracellular component for-

mation rates with a reduced number of independent

parameters. This property has made it possible to success-

fully describe full-scale domestic wastewater treatment

plants of numerous configurations by adjusting only 3 or 4

parameters (Oehmen et al. 2007).

Note further that, since the pathways are all linked

through the energy carriers, the successful calibration of

such a model is by itself a validation of the proposed model

structure.

KINETIC MODELLING–RNA-BASED APPROACH

The cells’ composition in relation to the growth rate has

been studied by several authors (Herbert 1958; Herbert

1976; Daigger & Grady 1982b; Esener et al. 1982; Bremer

& Dennis 1996). Herbert (1976) observed that when the

carbon source is the limiting substrate, the elementary

composition of cells is independent of the growth rate, but

the fractions of the cell constituents vary.

Approximately 50% to 65% of the mass of fast growing

bacterial cells is accounted for by proteins and 10 to 20% is

accounted for by RNA. All RNA can be considered rRNA

since it comprises approximately 85% of the cellular RNA

at all growth rates (Bremer & Dennis 1996) and all proteins

are synthesized by ribosomes. The ribosome is the catalytic

unit responsible of protein synthesis and its main catalytic

constituent is rRNA. As a result, a major aspect of the

metabolic status of bacterial cells is the level of rRNA, and

its level is correlated with growth rate (Herbert 1958;

Koch 1970; Keener & Nomura 1996).

Determination of the RNA/DNA ratio has been

proposed to assess the nutritional condition of larval fish

(Kaplan 2001) and growth rates in marine bacteria (Kerkhof

& Ward 1993; Dell’Anno et al. 1998) or in foodstuffs (Milner

et al. 2001). Muttray et al. (2001) used the rRNA/rDNA ratio

to characterize the metabolic activity of Pseudomonas

abietaniphila in activated sludge.

Using a genetic knockout mutant Frigon et al. (2006)

observed that the reactor configuration and the ability to

produce PHB had an impact on the rRNA level for a pure

culture growing in an acetate-fed reactor. Because the

intracellular concentration of rRNA varied with process

configuration or with the loading as well as with the growth

rate, these observations showed that one pseudo steady

state can not hold for different process configurations or

for different steady states (i.e. different maximal growth

rates) when a mass balance around rRNA is not included,

and then recalibration of the model is required.

RNA-based models have been developed to describe the

metabolic status of cells with a view to perform simulation

of microbial adaptation and transient behavior of cells

(Turner & Ramkrishna 1988; Frigon et al. 2002b; Frigon et al.

submitted; van Loosdrecht & Heijnen 2002; Gupta et al.

2005; Lavallée et al. 2005; Lavallée et al. in preparation).

In these models, the size of the component, here called the

protein synthesis system (PSS, or rRNA), is used to describe

the metabolic status of the cells. This component (XPSS)

denotes the rRNA level in the cells and it is used to model

the modulation of the specific growth rate. It catalyzes the

cell constituent synthesis.
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Most of these models suggest that the synthesis rate of

rRNA is autocatalytic as its rate of synthesis is related to its

own concentration (Figure 1). This provides a sigmoidal

increase of rRNA level after a switch in conditions. As a

result, when the level of the rRNA is low, the rate of change

of the transient response is slow; when the level is medium

the rate of change of the transient becomes fast; and

when the rRNA level is high, its further increase is small

and the response doesn’t quite change. Accordingly,

Daigger & Grady (1982b) observed that the rate of change

of the transient response (dm/dt) of Pseudomonas putida

increased with the growth rate to reach a maximal value

near a growth rate of 0.2 h21, and then decreased as the

growth rate increased. The autocatalytic reaction rate of

the rRNA synthesis can provide a mechanistic explanation

for the pattern of the growth rate adaptation observed by

Daigger & Grady (1982b) and so for the lag phase occurring

in a slow growing culture when the substrate limitation is

removed.

All proposed models present a component (XB) to

mimic the level of the building blocks or precursors.

The synthesis of the PSS and the structural component of

the biomass (XC) (mainly proteins, lipids and DNA) is rate-

dependent on the building block level.

Interfacing the biomass composition with molecular

techniques

van Loosdrecht & Heijnen (2002) first proposed a simplified

model in an academic context. These authors explained

that cells prioritize growth to storage. In order to describe

the storage process, it is needed to define models with a

variable amount of anabolic enzymes. They showed that

the simplified model predicted fairly well the PHB fraction

in biomass for various SRT.

Frigon et al. (submitted) proposed to use a carbon

mass balance, PHB extraction, protein assay and RNA

molecular techniques to model PHB accumulation and

growth of biomass in SBR. These authors proposed a

detailed description of the PSS and the structural com-

ponents of biomass to provide an explicit link between

molecular techniques and the model predictions.

Lavallée et al. (in preparation) on the other hand used a

COD mass balance, glycogen and DNA extraction to model

the response to substrate pulses and batch experiments

with high initial substrate to biomass ratio. Lavallée et al.

(in preparation) modelled the PSS using a component

with zero mass to conserve a closed COD mass balance on

the different components. These authors chose DNA for

quantitative population assessment since the DNA level per

cell remains constant for all growth rates and can be used

for quantitative interpretation of data for bacterial popu-

lations in activated sludge.

Table 1 summarizes the components considered by

these authors for their RNA-structured biomass.

The two last models were developed with an experi-

mental perspective in view of developing activated sludge

models that can be calibrated with intrinsic model para-

meters.

COMMON STRUCTURES IN PROPOSED MODELS

A simplified rRNA-structured model was formulated to

evaluate the sensitivity of the output of a rRNA-structured

model to the parameters of the rRNA synthesis and decay

models. Not all usual metabolic processes are included in

the model here, since the aim was to explicitly determine

the sensitivity of the proposed model structure.

The production of the PSS is an autocatalytic process

since it depends on its own concentration. The production

rate of the PSS is given by the net synthesis rate minus

the decay rate of the PSS and minus the loss causes by

cell decay.

Figure 1 | Common kinetic scheme of the models (symbols used may differ for the

different models in literature). SS: Soluble substrate; XS: intracellular

substrate or metabolites; XB: Building blocs or precursor; XPSS: protein

synthesis system or rRNA; XC: Structural component of cell or proteins;

XH: XS þ XSTO þ XB þ XPSS þ XC.
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rPSS ¼ kPSS £XPSS £Mi £Miþj 2 bPSS £XPSS 2 bXC

£XPSS ð1Þ

where bPSS and bXC are the decay rate of XPSS and XC

respectively, and Mi are saturation kinetic terms (e.g.

Monod).

The XPSS production will be in equilibrium with its

decay and its dilution into new biomass. The balance

equation for this component into the cell is described by:

dfPSS
dt

¼ 0

¼ kPSS £ fPSS £MXB
£MO 2 bPSS £ fPSS 2 fPSS

£
dXC

XC £ dt
ð2Þ

In this equation, the right term represents reduction of

fPSS caused by dilution from growth of the cell population.

At steady state, if we assumed the oxygen and the building

blocks are not limiting, the equation can be rewritten:

kPSS £ fPSS 2 bPSS £ fPSS ¼ m int
max £ fPSS ð3Þ

In this equation, mint
C is the specific production rate of

the PSS.

The metabolic status of the cells is introduced in the

model with the PSS level to describe the growth rate of the

cell’s structural material (XC):

mC ¼ mint
C £

fPSS
fmax
PSS

¼ ðkPSS 2 bPSSÞ £
fPSS
fmax
PSS

ð4Þ

As shown in Figure 2, using the autocatalytic process for

the XPSS production, it was possible to roughly describe

the rate of change of the transient response (dm/dt) of

Pseudomonas putida observed by Daigger & Grady

(1982b). The decay rate was varied unless fPSS goes to zero

with the dilution rate. From a metabolic point of view,

several phenomena can have incidence on the fPSS fraction

at low dilution rate. Some authors report variable decay

rate, variable maintenance, induction and repression of

metabolic pathways etc (Lavallée et al. 2002; Lavallée

et al. 2005).

A complete mathematical description of the simplified

model is given under a Petersen matrix form in appendix.

In brief, the exogenous substrate is taken up by biomass

to yield intracellular substrate (XS). The intracellular sub-

strate is used for building block (XB) production,

for storage (XSTO) and for energy expenditures (OUR)

Table 1 | Description of the RNA-structured biomass

Frigon et al. Lavallée et al. Van Loosdrecht & Heijnen

Mass balance Carbon COD COD

Substrate Acetate Glucose Acetate

XS acetyl-CoA G6P None

XB amino acids, nucleic acids,
lipids, other precursors

amino acids, other precursors,
soluble proteins, etc.

None

XSTO PHB Glycogen PHB

XPSS XPSS,R ¼ RNA

XPSS,P ¼ r-proteins

XPSS ¼ XPSS,R þ XPSS,P XPSS ¼ component with
zero mass‘

XPSS ¼ component with
zero mass

(rPSS ¼ autocatalytic) (rPSS ¼ autocatalytic) (rPSS ¼ biomass dependent)

XC XC,L ¼ lipids, non-proteins and non-RNA
cell constituents XP ¼ proteins

XC ¼ proteins, lipids, cell wall,
etc.

XC ¼ proteins, lipids, cell wall,
etc.

XC ¼ XC,P þ XC,L XC ¼ DNA
fDNA

DXC ¼ YSP

YSX
£ DPHB

XC,P ¼ (1 2 g) £ XP

XC,L ¼ b £ XP
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associated with biomass growth. It decreases with the

endogenous respiration of biomass bXC. The PSS (XPSS) is

a unit less component.

Figure 3 shows that the model response is sensitive to

the initial fPSS value. The output of the model is insensitive

to fPSS during the first few hours, but the discrepancy of the

cell concentration (XC) between the different simulations

increased all along the batch simulation according to the

fPSS used.

The lower the initial fPSS was, the longer the lag phase.

Since the rRNA level is correlated to the growth rate at

steady-state, a culture growing more slowly will have a

lower fPSS=f
max
PSS ratio and the lag phase will therefore stretch

over a longer period, as predicted by the model.

Figure 4 shows the output of the model after an up-shift

of the flow rate into a reactor. The cells concentration

(XC) and the fPSS=f
max
PSS reached the same values for every

value of fmax
PSS . The simulation shows that after 12 days,

the fPSS=f
max
PSS ratio always reaches the same value and the

model is thus insensitive to fmax
PSS at steady state. Again,

during the transient induced by the flow rate up-shift,

the model was sensitive to the initial fPSS=f
max
PSS fraction.

This indicates that the growth response of the model varies

with the fPSS fraction, that is to say, with the history of the

cell components.

Additionally, a phase analysis shows that at steady

state, the XPSS level increases when the hydraulic retention

time is decreased (Figure 5). The growth response will

change accordingly, as well as the transient behaviour

after a modification of the retention time. Hence, a rRNA

model would reflect the specific growth rate level of micro-

organisms, according to the conditions prevailing in the

reactor.

In ASMs, the specific heterotrophic oxygen uptake rate

can be described by the following equation:

OUR

XH
¼ mH

ð12 YHÞ

YH
ð5Þ

In this equation, mH and YH are two parameters.

Because mH does not reflect the variations of the specific

activity associated to variations of the rRNA level, recali-

bration of the model will be required when the conditions

Figure 2 | Variation of RNA fraction and growth acceleration. D ¼ m-b. The decay rate

was varied between 0.02 h21 at D ¼ 0.6 to 0.13 h21 at D ¼ 0.00. (Data

adapted from Daigger & Grady 1982b).

Figure 3 | Batch reactor. S0/X0 ¼ 10. Sensitivity analysis for initial values of

fPSS=f
max
PSS ¼ 0.8; 0.27; 0.16; 0.11 units/g.

Figure 4 | Sensitivity of the model during the start-up of a continuous-flow stirred

reactor (HRT ¼ 6.5 days).
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prevailing in the reactor are significantly different from

those prevailing during the preceding calibration exercise.

In a rRNA model, on the other hand, the specific

heterotrophic oxygen uptake rate related to the growth

process is given by:

OURG

XC
¼

mmax
C

fmax
PSS

£
XPSS

XC
£
ð12 YCÞ

YC
ð6Þ

The parameter YC is the yield of biomass on intracellu-

lar substrate XS. This equation reflects the variation of the

specific activity of microorganisms and thus recalibration

will no longer be required. The calibration procedure would

remain similar to those used with ASM, but the reference

unit used in the description of the specific respiration would

be the PSS:

OURG

XPSS
¼

mmax
C

fmax
PSS

£
ð12 YCÞ

YC
ð7Þ

In light of this analysis, it can be concluded that

a rRNA-structured model is sensitive to the history of

the XPSS component, to the process configuration and to the

operation conditions. However, the model is not sensitive

to the fPSS fraction at steady state. Thus, identification of

the fmax
PSS value must be done under transient conditions.

Since the model is sensitive to the relative fraction fPSS=f
max
PSS ,

an explicit link between measured and predicted rRNA

level can been made.

MASS BALANCE DURING TRANSIENT PERIOD

Lavallée et al. (in preparation) used DNA as basic unit for

biomass quantification. The maximal growth rate of cells

(mmax
C ) was then determined by monitoring the evolution of

the DNA concentration in a batch experiment with a high

initial S0/X0 ratio. The DNA measurements were converted

to COD by using a measured DNA/COD ratio ( fDNA).

Hence, using the COD of the suspended solids minus the

COD of glycogen, these authors were able to observe

variations of the intracellular COD fractions ( fXS þ fXB).

Considering the nitrogen assimilation and the N/COD ratio

(inxc), they observed that fXS was negligible and most of the

intracellular fraction was under the fXB form. Using this

method for a batch experiment, a significant increase of the

fXB fraction was observed as soon as the storage capacity of

the biomass was fully utilized, and its decrease after the

substrate was exhausted. Since a COD mass balance was

used, the nature of the fXB could not be determined. It was

assumed that the product was an aminated storage

component (e.g. amino acids, intracellular soluble proteins,

etc). After exhaustion of the substrate, growth occurred on

the basis of a breakdown of glycogen and XB. With this in

mind, Lavallée et al. suggested that a model assuming a

constant cell size (XS þ XB þ XC ¼ Cte) can be used as

long as the storage capacity of the biomass is not fully used.

These authors proposed to use a mass balance on the XB

component to model large transients.

Frigon et al. (submitted) used a carbon mass balance

and proposed to describe the XPSS into two subset pools, the

XPSS,R(RNA) and the XPSS,P (protein) in order to explicitly

link measured and predicted rRNA levels. The ratio

between these two components was assumed constant

since these components are tightly co-regulated by cells

(Nomura 1999).

Hence, by combining the methods proposed by the

authors of these two papers (adapted to the units used)

it will be straightforward to determine the fmax
PSS by using

the equation (7), knowing the actual rRNA concentration,

the OURG and the yield YC. Intracellular levels of the

component XB can be determined by using a mass balance

of carbon (or COD) and nitrogen around biomass. It follows

that a calibration of the model conversion rates is possible

on the basis of the above mentioned data.

Figure 5 | Semi-continuous-flow stirred reactor. Sensitivity of the model to hydraulic

retention time (f max
PSS ¼ 0.5 units/g).

667 B. Lavallée et al. | Modelling using rRNA-structured biomass models Water Science & Technology—WST | 59.4 | 2009



BIODIVERSITY AND RNA-STRUCTURED BIOMASS

MODEL

Proper interpretation of the rRNA level in terms of the cell’s

metabolic status clearly needs further research. For

example, Frigon et al. (2002a) determined the diurnal

variations of rRNA levels of a population of Acinetobacter

and of a population of Gordonia in the mixed liquor of a

full-scale wastewater treatment plant, and observed two

different profiles: the variations for the first population

followed variations in the influent loading, while the rRNA

of the second population remained stable throughout the

day. Using a model-based analysis, they suggested that the

ecological function of the populations may be responsible

for the observed trends. Muttray et al. (2001) suggested it

cannot be assumed that the positive linear relationship

between growth rate and RNA:DNA ratio holds for all

microorganisms, and also observed that a direct deduction

of actual growth rates in batch cultures from the RNA:DNA

ratio measured at steady-state may not always be possible.

Additionally, it is increasingly recognized that advances

in wastewater treatment processes will require description

of the biodiversity of microorganisms present in these

systems, and of their diverse biochemical and metabolic

activities. With the advent of ribosomal RNA (rRNA)-based

molecular techniques, it has become possible for environ-

mental engineers and scientists to accurately assess the

bacterial diversity in activated-sludge systems (Yuan &

Blackall 2002; Saikaly et al. 2005). No wonder that the last

decade one saw the publication of several studies describing

bacterial diversity in activated sludge process through

phylogenetic analysis (evolutionary-based analysis of

marker genes), mainly of the 16S rRNA gene. Using rRNA

terminal restriction fragment analysis, some indices were

proposed to model the fingerprint of a bacterial community

structure, that were correlated to influent variables and

performance indicators (Gilbride et al. 2006).

CONCLUSIONS AND PERSPECTIVES

Structured biomass models are by nature less empirical

than unstructured biomass models. While increasing model

complexity, they simplify the model calibration effort

because they replace extant by intrinsic parameters.

Development of molecular techniques has created a deeper

insight in the microbial diversity and activity level of

microbial populations in activated sludge and, with

this insight, RNA-based models are currently under

development.

An explicit link between molecular techniques and the

model structures have been proposed. It has become possible

to determine the rRNA to biomass ratio to accurately assess

the metabolic status of microbial populations in activated-

sludge systems. The autocatalytic process proposed to model

the rRNA component dynamics can describe the rRNA

evolution, the growth rate adaptation (dm/dt) and the growth

lag phase observed by Daigger & Grady (1982a,b) and

observed by the authors in their own experiments (Frigon

et al. submitted; Lavallée et al. in preparation). Further

studies areneeded toprovide aproper interpretationof rRNA

levels in terms of metabolic status.

A simple rRNA-structured model has been presented

here. By combining the methods proposed by the authors,

and knowing the actual rRNA concentration, the OURG

and the yield YC, it will be straightforward to determine the

by using the equation (7). To model large transients, the

intracellular concentrations of the component XB need to

be determined by mass balancing the carbon (or COD)

around the biomass. A calibration of the remaining model

parameters can then be done by using available data.

However, the regulation of the transformation reaction

rates of the components are not yet well defined, and it has

great influence on the model output. Further studies are

therefore need for validation of such a model.

Results from this kind of metabolic modelling exercises

and from the TUDP EBPR metabolic model suggest that it

may be possible to develop activated sludge models

calibrated by intrinsic and not extant model parameters.

For the time being, however, the rRNA-structured

biomass models remain restricted to research. Though, the

driving force for that kind of model currently remains low in

treatment of wastewater, they present the potential of key

improvements that practitioners would benefit from as they

would lead to improved reliability of activated sludge

models. Water professionals that develop strategies to

control microbial populations would clearly take advantage

of such models too.
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APPENDIX

|

Rates XPSS SO SS XS XB XSTO Snh XC Xii

Units: units/g gCOD/m3 GCOD/m3 gCOD/m3 gCOD/m3 gCOD/m3 gN/m3 gCOD/m3 gCOD/m3

r1 2(1 2 YS) 21 YS

r2 21 1

r3 21 1 2 inxc

r4 2(1 2 YC)/YC 2(1 2 YC)/YC 21 1

r5 1

r6 1 21

r7 1 21 inxc

r8 21

r9 2XPSS/XC 2(1 2 fu) £
(1 þ XS/XC

þ XSTO/XC

þ XB/XC)

2XS/XC 2XB/XC 2XSTO/XC (1 2 fu) £
(XB/XC þ 1)
£ inxc

21 fu £ (1 þ XS/XC

þ XSTO/XC

þ XB/XC)

|

Rates

r1 Substrate uptake kS £ Mss £ Mso £ Ixs £ XC gCOD/m3/d

r2 Substrate storage kSTO £ Mssto £ Mstomax £ XC gCOD/m3/d

r3 increase of XB kB £ Mnh £ Mxs £ Mso £ XC gCOD/m3/d

r4 aerobic growth of XC mC
int/fPSS

max £ XPSS/XC £ Mso £ Mxs £ Mxb £ XC gCOD/m3/d

r5 aerobic growth of XPSS kPSS £ XPSS £ Mso £ Mxs £ Mxb units/m3/d

r6 degradation of Xsto Dksto £ Msto £ XC gCOD/m3/d

r7 degradation of Xp bXp £ XP gCOD/m3/d

r8 decay of XPSS bXPSS £ XPSS units/m3/d

r9 decay of XC bC £ XC gCOD/m3/d

|

Mss SS/(SS þ Kss)

Mso SO/(SO þ Ko)

Ixs Kixs/(Kixs þ XS/XC)

Mnh Snh/(Knh þ Snh)

Mxs (XS/XC)/(Kxs þ XS/XC)

Mssto (XS/XC)/(Kxs,sto þ XS/XC)

Mstomax ðfmax
sto 2XSTO=XCÞ=ðKistoþ fmax

sto 2XSTO=XCÞ

Msto (XSTO/XC)/(Ksto þ XSTO/XC)
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