
ENVIRONMETRICS

Environmetrics 2008; 19: 602–617

Published online 18 December 2007 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/env.900
Enhanced process monitoring for wastewater treatment systems
Chang Kyoo Yoo1*,y, Kris Villez2, Stijn W.H. Van Hulle3 and Peter A. Vanrolleghem2,4

1 College of Environment and Applied Chemistry/Center for Environmental Studies, Kyung Hee University,
Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Korea

2 BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Ghent University,
Coupure Links 653, B-9000 Gent, Belgium

3 PIH, Department of Industrial Engineering and Technology, Hogeschool West-Vlaanderen,
Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
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SUMMARY

Wastewater treatment plants (WWTPs) remain notorious for poor data quality and sensor reliability problems due to
the hostile environment, missing data problems and more. Many sensors in WWTP are prone to malfunctions in harsh
environments. If a WWTP contains any redundancy between sensors, monitoring methods with sensor reconstruction
such as the proposed one can yield a better monitoring efficiency than without a reconstruction scheme. An enhanced
robust process monitoring method combinedwith a sensor reconstruction scheme to tackle the sensor failure problems
is proposed for biological wastewater treatment systems. The proposed method is applied to a single reactor for high
activity ammonia removal over nitrite (SHARON) process. It shows robust monitoring performance in the presence of
sensor faults and produces few false alarms.Moreover, it enables us to keep the monitoring system running in the case
of sensor failures. This guaranteed continuity of the monitoring scheme is a necessary development in view of
real-time applications in full-scale WWTPs. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The number of sensor and other data in wastewater treatment and water transport systems has increased

almost exponentially over the last few decades (Seyfried et al., 2001; Jeppsson et al., 2002; Olsson and

Newel, 1999; Rieger et al., 2003, 2004, 2005; Vanrolleghem and Lee, 2003; Yoo et al., 2004b, 2006).

This does not necessarily mean that the information has increased as much. With increasing sensor

availability and stricter effluent quality requirements the operator will need ever improving support

from the control systems. This leads to higher demands on reliable fault analysis, data screening,

information extraction and condensation, and operator guidance. Next to that, a strong need for

guarantee of data quality is expressed (Strotmann et al., 1995; Jetten et al., 1997; Cox et al., 2000;

Rosen and Lennox, 2001; Rosen et al., 2003).
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SMART MONITORING 603
Process operators obtain information on the current process conditions from a range of sensor types.

Hence, the accuracy of sensors is crucial to successful process control and monitoring and the ability to

detect sensor faults is very useful, especially when processes are monitored and controlled based on

process information from many sensors. Sensors may exhibit partial failures such as bias, drift or

precision degradation as displayed in Figure 1. It causes the accuracy and reliability of the measurement to

decrease, which may result in an erroneous control action and false perception of the performance of the

monitored system. Faulty sensors that are either completely or partially failing (hard fault or soft fault)

provide incorrect information for monitoring and control. This can be detrimental to various

data-driven decision schemes. Moreover, data may not be available due to sensor malfunction or

communication problems within the data collection system. These data problems make it difficult to

extract and interpret information from data. Monitoring or control using the measurements is then

problematic.

Conventional engineering methods to find and to correct for sensor faults make use of procedures

that check and recalibrate the sensors periodically. Often, this does not satisfy the requirements of the

hostile environment in environmental processes, such as water, waste and air pollution. Therefore,

prompt detection of the occurrence and correct identification of the location of sensor faults and reliable

reconstruction (or recovery) of faulty sensors is of primary importance for efficient operation. In

contrast to fault detection and isolation, sensor fault detection and validation is quite a new research

area, which is required for use in wastewater treatment, but has few application results (Qin and Li,

1998; Qin, 2003; Volcke et al., 2005).

This paper concentrates on formulating a process monitoring system to the problem of ‘‘faulty

sensor’’ characteristics in wastewater treatment plant (WWTP). The method developed here uses a
Figure 1. Four types of sensor faults, (a) bias, (b) drifting, (c) complete failure, (d) precision degradation
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604 C. K. YOO ET AL.
principal component analysis (PCA) model for process monitoring and a sensor validation model to

generate a reconstructed sensor value which can be used to develop a more reliable monitoring model.

This approach is organized by combining the PCA model and the faulty sensor reconstruction method.

The important tasks involved in the proposed monitoring system are to check the biological process

state continuously, and maintaining its capabilities by applying the sensor reconstruction technique

under the sensor failure case.

This paper is organized as follows. Section 2 shows the single reactor high activity ammonia

removal over nitrite (SHARON). Section 3 introduces the statistical process monitoring, the sensor

fault identification and reconstruction methodology and proposes an enhanced process monitoring

approach to tackle faulty sensors. The monitoring performances of the proposed method are illustrated

through a lab-scale reactor in section 4. Finally, conclusions are drawn in section 5.
2. MATERIALS

2.1. SHARON process

The SHARON process has demonstrated its efficiency and flexibility in the treatment of sludge

digestion wastewater which is characterized by high concentration of ammonia nitrogen. In the

SHARON process, partial nitrification i.e. biological oxidation of ammonium to nitrite is established by

working at high temperature (about 358C) and maintaining an appropriate sludge retention time (SRT)

of 1–1.5 days, so that ammonium oxidizers are maintained in the reactor, while nitrite oxidizers are

washed out and further oxidation of nitrite to nitrate is prevented. In this way, significant aeration cost

savings are realized in comparison with conventional complete nitrification. When only half of the

ammonia is converted, a combination with an Anammox unit becomes economically interesting, as in

the subsequent Anammox treatment step equimolar amounts of ammonia and nitrite are converted to

nitrogen gas (Hellinga et al., 1998; van Dongen et al., 2001; Seyfried et al., 2001). In comparison with

conventional N-removal, the coupled SHARON and Anammox processes in theory result in a 40%

reduction of the stoichiometrically required oxygen while no carbon source needs to be added and a

negligible amount of sludge is produced. The success of this concept is, however, highly dependent on

the control of the SHARON process since a stable operation of the Anammox process requires

equimolar concentrations of ammonia and nitrite in the SHARON effluent and absence of nitrite inhibition

in the Anammox reactor (van Dongen et al., 2001; Van Hulle et al., 2005; Volcke et al., 2006).
2.2. A lab-scale SHARON reactor

A lab-scale SHARON reactor was constructed and operated in the BIOMATH laboratory (Figure 2).

The reactor is a 2 L continuously stirred tank reactor (CSTR) without biomass retention. The synthetic

influent is pumped with a peristaltic pump from the 5 L influent vessel to the reactor. The pump flow

rate of this influent pump determines both the hydraulic residence time (HRT) and the sludge retention

time (SRT), since both residence times are equal and defined as the ratio of the volume to the flow rate.

The reactor is aerated through a pumice stone using air from a compressor (1 bar) and the normal

operational temperature is 358C. In the reactor the dissolved oxygen (DO) and pH are measured. The

pH is controlled through Labview software (National Instruments, www.ni.com) by the addition of acid

(HCl) and base (NaHCO3). The data used in the research were collected in the steady-state operation

period and consist of 10 variables: (1) HRT, (2) influent ammonium, (3) bicarbonate:ammonium ratio,
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Figure 2. Set-up of a lab-scale SHARON reactor

SMART MONITORING 605
(4) DO, (5) pH, (6–7) dosage rates of base and acid, and (8–10) daily measurements of ammonia,

nitrite, and nitrate. Their typical variable trajectories show three times abnormal behaviors of acid and

base addition at samples 65, 67, and 77, at which abnormally high amounts of base and acid are added

to the reactor due to actuator failures. Except for these three samples, the SHARON reactor operated

normally (Van Hulle et al., 2005).

3. METHODS

3.1. Statistical monitoring

The fault detection method, which monitors the process is based on the extraction of information that is

latent in the multidimensional data matrix and unobservable by means of univariate methods. A key

point is thus how to extract the hidden information from the multidimensional data set. Provided with

historical data during normal process operation, most of the common-cause variation in the process can

be expressed as a function of a set of variables, which are lower in number compared to the set of

original variables. PCA models as used here are able to account for correlation between variables in a

monitoring context. PCA decomposes the data matrix (X) which covers m sensors and N samples into a

score matrix T and a loading matrix P by singular value decomposition (SVD)

X ¼ TPT þ ~T ~P
T ¼ X̂þ ~X ¼ ½T ~T�½P ~P�T ¼ TP

T
(1)

where X̂ ¼ TPT is the model matrix and ~X ¼ ~T~P
T
is the residual matrix. The principal component

subspace (PCS) is Sp¼span{P} and the residual subspace (RS) is Sr¼ span{~P}. A sample vector x can
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be projected on the PCS and RS respectively:

x̂ ¼ PPTx � Cx 2 Sp (2)

~x ¼ ~P~PTx � ðI� CÞx ¼ ~Cx 2 Sr (3)

x ¼ x̂þ ~x (4)

PCA uses the squared prediction error (SPE) as a fault detection index

SPE ¼ ~xk k2¼ ~Cx
�� ��2¼ xTðI� CÞx � da (5)

The detection limit for SPE can be determined with Q-statistics. If a sensor fails, which breaks the

normal correlation, the residual will increase above detection threshold (Qin, 2003).

Ameasure of the variation within the PCS is given by the Hotelling’s T2 statistic. T2 at sample k is the

sum of the normalized squared scores, and is defined as

T2ðkÞ ¼ tðkÞL�1tðkÞT (6)

whereL�1 is the diagonal matrix of the inverse of the eigenvalues associated with the retained principal

components (PCs). The confidence limit for T2 is obtained using the F-statistic:

T2
m;n;a ¼ mðn � 1Þ

n � m
Fm;n�m;a (7)

where n is the number of samples in the model, m is the number of PCs, and a is an appropriate level of

significance for performing the test which typically takes the value of 0.05 or 0.01 for the warning and

action limits respectively.

The confidence limit for the SPE can be computed from its approximate distribution

SPEa ¼ Q1

ca
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q2h2

0

p
Q1

þ 1þQ2h0ðh0 � 1Þ
Q2

1

" #1=h0

(8)

where ca is the standard normal deviate corresponding to the upper (1�a) percentile and lj is the

eigenvalue associated with the jth loading vector,Qi ¼
Pd

j¼mþ1 l
i
j for i ¼ 1; 2; 3 and h0 ¼ 1� 2Q1Q3

3Q2
2

.

For a new on-line sample xnew; if T2
new < T2

lim and Qnew < Q2
lim, we consider the process to be in

control with 100(1�a)% confidence. Otherwise, the process may be out of control. Here, the T2 value

which indicates a distance is used to detect faults associated with abnormal variations within a model

subspace, whereas the Q value which indicates a distance from the residual space is used to detect new

events that are not taken into account in the model subspace (Yoo et al., 2004a).
3.2. Sensor fault identification and reconstruction

If the normal process model is built as a PCA model, the model residuals are used to detect sensor

faults. In the presence of a sensor fault, the sensor measurement (x) will contain the normal values of

the process variables and the fault, that is

x ¼ x� þJif iðtÞ (9)
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where x� is a vector of normal sensor values, fi(t)2R li is a vector of the fault magnitude, Ji2R nxli is

a matrix of fault directions, and fi is the magnitude of the fault. While Ji ¼ ½0 0 � � � 1 � � � 0�T represents

a single sensor fault in the ith sensor, Ji contains the corresponding columns of the identity matrix to

represent multiple sensor faults. Using Equation (6), the model residual, e(t), can be written as

follows:

eðtÞ ¼ BxðtÞ ¼ Bx�ðtÞ þ BJif iðtÞ ¼ e�ðtÞ þ BJif iðtÞ (10)

where B is the model matrix which is ~P
T
in the PCAmodel and e�(t) is the model residual which contains

a measurement noise. A fault will cause the residual e(t) to increase (Qin and Li, 1998; Qin, 2003).

3.2.1. Sensor fault identification. When a sensor failure is detected, the faulty sensor must be

identified. In this paper, we used the structured residual approach with maximized sensitivity (SRAMS)

(Qin and Li, 1997). They suggested a structured residual approach wherein a set of residuals is

generated of which each residual is most sensitive to a specified subset of faults while being insensitive

to others. For the case of a single sensor fault in the ith sensor, Equation (10) becomes

eðtÞ ¼ e�ðtÞ ¼ bif iðtÞ (11)

where bi is the ith column of matrix B which represents the fault direction. By pre-multiplying a

transformation matrix W to e(t), we can generate the following structured residuals r(t):

rðtÞ ¼ WeðtÞ ¼ bif iðtÞ (12)

where the matrixW is designed so that each element of r(t) is insensitive to one particular sensor fault

and sensitive to the other faults. wi is chosen so that ri(t) is insensitive to the ith sensor fault but most

sensitive to the others. Mathematically, this is equivalent to

max
wi

X
j6¼i

ðwT
i bjÞ2

bj

�� ��2 (13)

Geometrically,wi is chosen to be orthogonal to bi as this minimizes its angle to other fault directions

bj. Four types of sensor fault identification are suggested by Qin and Li (1998), which are (1) an

identification index based on exponential weighted moving average (EWMA) filtered squared residuals

(IFSR), (2) the generalized likelihood ratio (GLR), (3) the cumulative sum of residuals (QSUM), and (4)

the cumulative variances index (VSUM) (Qin and Li, 1997).

3.2.2. Sensor reconstruction. After a fault is detected, it is important to identify the fault and apply

the necessary corrective actions to eliminate the abnormal condition. The procedure to restore normal

conditions by applying a corrective change in the data is called data reconstruction. Logically,

the procedure for identifying a fault by reconstruction for a given type of faults is called data

identification via reconstruction. Reconstruction of the normal data from faulty measurements leads to

the estimation of the fault magnitude. Therefore fault reconstruction is presented first, followed by fault

identification (Qin, 2003). Given a sensor fault direction, the best reconstruction can be used to estimate

the sensor fault magnitude fi(t) by minimizing the effect of the fault on e(t) in the direction Ji.

Mathematically, this is formulated as the following least-squares problem:

J ¼ e�ðtÞk k2¼ eðtÞ � BJif iðtÞk k2 (14)
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The estimated magnitude for the given sensor fault direction is then

^
f iðtÞ ¼ ðBJiÞþeðtÞ (15)

where (�)þ is the Moore–Penrose pseudo inverse. The task of sensor reconstruction is to estimate the

normal values x� by eliminating the effect of a fault fi. A reconstructed value xi is calculated by

correcting the effect of a fault on the process data x:

xi ¼ x� BJi f̂ iðtÞ (16)

where
^
f i is an estimate of the actual fault magnitude fi along the SRAMS direction. The reconstructed

value ðx̂iÞ could be used in the monitoring and prediction models instead of the actual faulty

measurements (Qin and Li, 1997; Yoo et al., 2006).

3.3. Enhanced monitoring scheme

The need for the integration of sensor signals with data quality verification and fault-detection systems

is gaining acceptance from plant staff of WWTP (Jetten et al., 1997; Olsson, 2002; Jeppsson et al.,

2003). Figure 3 shows the proposed monitoring scheme which is able to detect and compensate for

faulty measurements, thereby enhancing its monitoring usefulness further. The first step in this

methodology is the construction of the PCAmodel using normal historical data in order to construct the

common-cause redundancy model. Then, sensor fault identification and reconstruction are executed by

the SRAMS sensor validation system in the second step. If any index of a sensor signal exceeds the

confidence limit, sensor reconstruction should be executed. The sensor fault magnitude and fault type

can be estimated by means of the reconstructed sensor value. When a faulty sensor has been identified,

the reconstructed value for the corresponding measurement is used to replace the faulty measurement

in the monitoring system. Finally, the statistical monitoring system can discern abnormal events and

disturbances from normal operational conditions. The enhanced monitoring approach proposed here

therefore gives us the capability to keep the monitoring system running in the presence of faulty

measurements. Additionally, the variable contribution plots of conventional monitoring systems can be

used as an independent means of interpreting and isolating faults.

4. RESULTS AND DISCUSSION

4.1. Process monitoring in the case of faulty sensors

A process model of the SHARON data set using PCAwith two PCs was constructed and an isolation

matrix with SRAMS was designed. Filtered SPE and FSR are used to detect the sensor fault and two

indices of IFSR, VSUM, and VSUM with the 95% confidence level are monitored to identify faulty sensors.

Two types of sensor faults, including complete failure and precision degradation are introduced at time

tf, where the abnormal condition is caused by single sensor failure. The remaining measurements are

used to reconstruct the faulty sensor based on the redundancy of the measurements.

In order to show the impact of a faulty sensor on the monitoring results, the performance of the

monitoring system with and without sensor validation system is compared using two scenarios. Sensors

in wastewater treatment are often corrupted due to air bubbles, significant noise, or they may fail

completely due to sludge fouling and have to function in very harsh environments (Olsson and Newell,

1999). Four types of sensor faults including bias, drift, complete failure, and precision degradation
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Figure 3. The proposed enhanced monitoring scheme with a sensor reconstruction module

SMART MONITORING 609
which are common inWWTPs are introduced at time tf, where the sensor abnormal condition is caused

by each failure scenario. Because the DO sensor is the most used sensor inWWTP and represents a high

correlation with other variables, we focused on two fault scenarios related to the DO sensor which

are the precision degradation due to significant noise and complete failure due to sludge clogging. The

remaining measurements are used to reconstruct the faulty sensor based on the redundancy of the

measurements (Wang and Chen, 2004). Table 1 summarizes the two types of abnormal conditions

detected and lists the fault and detection times. In order to reduce false alarms due to dynamic

transients, an EWMA filter with a coefficient r¼ 0.90 was applied to generate the FSR’s for both fault

cases. The VSUM index is calculated based on the unfiltered structured residuals with a moving window

of five samples considering the hydraulic retention time.

In the first test, precision degradation with a noise variance of 2 was added to the DO sensor at

sample 50 and last until the end of the data set. EWMA-filtered squared residual (FSR) in Figure 4 can
Copyright # 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 602–617
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Table 1. Summary of two sensor failures and their detection results

Precision degradation Complete failure

Faulty sensor DO DO
Fault expression f1(t)¼DO(t)þN(0,2) f2(t)¼ c
Fault size DO(t)þN(0,2) c¼ 9.0
Fault time (tf) 50 50
Detection time ð̂tfÞ 54 51

610 C. K. YOO ET AL.
detect this fault more effectively than the SPE plot. To identify which sensor is faulty, four fault indices

of IFSR, GLR, QSUM, and VSUM are examined for all sensors. Since this is a variance change, VSUM has a

value below the control limits for the fourth sensor, which indicates that the DO is a faulty sensor. In

Figure 5(a), the reconstructed sensor signal indicates that a difference between normal and

reconstructed sensor data is relatively small and the reconstruction can thus be used for replacement of

the faulty data, provided the faulty data are compared with the reconstructed data. The estimated fault

size in Figure 5(b) shows the result from a precision degradation and how large the fault is. Figure 6

compares the monitoring performances affected by this fault. Although the sensor signal comes from

the faulty sensor, this had no effect on the wastewater treatment. With the faulty sensor, the T2 and SPE

charts in Figure 6(a) move up and down many times above the control limits from the beginning of the

sensor fault to the end although the operation status of the SHARON process is normal. On the other
Figure 4. Sensor fault identification of a precision degradation fault in DO sensor, (a) SPE plot, (b) FSR, (c) IFSR, (d) GLR,

(e) QSUM, (f) VSUM
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Figure 5. Sensor reconstruction result of a precision degradation fault in DO sensor, (a) normal, faulty, and reconstructed

signals, (b) fault size
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hand, sensor validation checked the validity of the sensor after it is detected faulty. After the DO

measurement is reconstructed, the monitoring results in Figure 6(b) show only three abnormal results,

which are close to the case of no sensor faults. The monitoring reliability is improved by validating the

measurement data, isolating the failed sensor and finally recovering, by model estimation, the failed

sensor measurement. The reconstructed measurements of the faulty sensor result in a more accurate

status representation, which in turn leads to a minimized number of false alarms, while true deviations

are retained and detected.

Secondly, a complete failure of the DO sensor is tested. The failure is introduced at time 50, where

the DO value is assumed to be constant at 9mg/L and lasts until the end of the data set. As shown in

Figure 7, this sensor fault was detected, identified, and reconstructed. The complete failure (sensor 4) is

detected in the SPE plot at sample 52 and is effectively detected in the identification indices within a

relatively short time. To illustrate the fault identification in detail, four fault indices are shown in

Figure 7. Values below 1 indicate faulty situations. FSR can exactly identify two sensors: number 4

(DO) and NO3,e which are below the confidence limit, as NO3,e is strongly correlated with DO in the

loading plot (not shown). Since this fault is the result of a complete failure, all fault indices have a

smallest value for the fourth sensor (DO) which makes the correct identification of the faulty sensor

possible. The estimated fault size in Figure 8(b) shows the result from a complete failure and how large

the fault is. The monitoring performances affected by this fault are compared in Figure 9. With the

faulty sensor, the SPE charts in Figure 9(a) remain above the control limits from sample 65 to the end

although the operation status of the SHARON process is normal and the faulty sensor had no effect on

the wastewater treatment. Obviously, the reliability of the multivariate monitoring system is detoriated

and makes it subject to unfavorable criticism.When the sensor are reconstructed, the T2 and SPE values

in Figure 9(b) remain within the control limits except for the three abnormal events of extreme acid and

base addition, hereby improving the robustness of the monitoring system.
Copyright # 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 602–617
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Figure 6. T2 and SPE plots of the PCA monitoring for a precision degradation in DO sensor using (a) faulty sensor

(b) reconstructed sensor
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4.2. Contribution plot in the case of faulty sensors

Once a sensor fault or special event has been detected, it is important to diagnose the event to find an

assignable cause. For this, the contribution of each measurement variable to the deviations observed in

the monitoring metric can be displayed. These contribution or diagnostic charts can be immediately

displayed on-line by the operator as soon as the special event is detected. Although these plots do not
Copyright # 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 602–617
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Figure 7. Sensor fault identification of a complete failure in DO sensor, (a) SPE plot, (b) FSR, (c) IFSR, (d) GLR, (e) QSUM,

(f) VSUM
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provide direct fault isolation, they showwhich group of variables is highly correlated with the fault; it is

then up to the process operator to use his or her insight to provide feasible interpretations (Wise and

Gallagher, 1996; Yoo et al., 2004c). In Figure 10, contribution plots of the SPE statistics using the

faulty sensor and the reconstructed sensor at sample 75 are shown respectively. The contribution plot of

the faulty sensor in Figure 10(a) shows that the variable 4 (DO) primarily contributes to the SPE values
Figure 8. Sensor reconstruction result of a complete failure in DO sensor (a) normal, faulty and reconstructed signals,

(b) fault size
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Figure 9. T2 and SPE plots of the PCA monitoring for a complete failure in DO sensor using (a) faulty sensor (b) reconstructed

sensor

614 C. K. YOO ET AL.
but this has no effect on the wastewater treatment performance. This may be misleading to an operator

and may eventually cause major process upsets by incorrect control actions. On the other hand, it is

notable that the contribution plots for SPE value with the reconstructed sensor in Figure 10(b) show

contributions which are relatively smaller than those under the faulty sensor case, thus indicating

normal behavior. This difference in magnitude of the contributions are the result of an increased sensor
Copyright # 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 602–617
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Figure 10. Contribution plots of the PCA monitoring for a complete failure in DO sensor using (a) faulty sensor

(b) reconstructed sensor

SMART MONITORING 615
reliability by considering a complete failure phenomenon such as the sludge fouling which occurs

occasionally in WWTP.
5. CONCLUSION

WWTPs are notorious for poor data quality and sensor reliability due to the harsh environment that

sensors are put in. The equipment and instrumentation problems in the WWTP therefore pose an

interesting challenge for monitoring and supervisory control of systems characterized by faulty

sensors, missing data problems, and equipment failures. It motivates the possibility that an enhanced

monitoring systemwith sensor validation modules can be used inWWTPs, in order to allow the process

monitoring system and the eventual control system to take the faulty measurement into account and

efficiently fulfill its mission with reconstructed data. The application of the proposed monitoring

method to the SHARON process has demonstrated its enhanced monitoring performance and

highlights its potential for WWTP optimization. In addition, it can be stated that a sensor validation and

reconstruction scheme is a crucial element of a robust monitoring system which is able to cope with all

possible kinds of sensor failures. Only then, other important tasks in monitoring of biological

processes, such as assessment of the process capability and performance, can be performed.
6. NOMENCLATURE
a th
Copyright # 2
e number of latent variables in PCA
B m
odel matrix
007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 602–617

DOI: 10.1002/env



616 C. K. YOO ET AL.
d th
Copyright # 2
e number of variables
E r
esidual matrix
e(k) k
th row of E
fi a
 vector of the fault magnitude
f̂ i a
n estimate of the actual fault magnitude fi

m th
e number of principal components
n th
e number of samples
k s
ample index
P lo
ading matrix
PCS p
rincipal component subspace
r(t) th
e structured residual
RS r
esidual subspace
SPE th
e squared prediction error
T th
e score matrix
T2 H
otelling’s T2 statistic
X d
ata matrix (X 2 Rn�d in PCA)
X̂ ¼ TPT th
e model matrix

~X ¼ ~T~P

T
th
e residual matrix
x d
-dimensional column vector of data matrix
x� a
 vector of normal sensor values
xjðkÞ th
e entry in the jth row and kth column of X
x̂ r
econstructed value
W tr
ansformation matrix
a a
n appropriate level of significance
li th
e eigenvalue associated with the ith loading vector
L d
iagonal matrix of the inverse of the eigenvalues
J m
atrix of fault directions.
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