
Adaptive Task Checkpointing and Replication:
Toward Efficient Fault-Tolerant Grids

Maria Chtepen, Filip H.A. Claeys, Bart Dhoedt, Member, IEEE, Filip De Turck, Member, IEEE,

Piet Demeester, Senior Member, IEEE, and Peter A. Vanrolleghem

Abstract—A grid is a distributed computational and storage environment often composed of heterogeneous autonomously managed

subsystems. As a result, varying resource availability becomes commonplace, often resulting in loss and delay of executing jobs. To

ensure good grid performance, fault tolerance should be taken into account. Commonly utilized techniques for providing fault tolerance

in distributed systems are periodic job checkpointing and replication. While very robust, both techniques can delay job execution if

inappropriate checkpointing intervals and replica numbers are chosen. This paper introduces several heuristics that dynamically adapt

the abovementioned parameters based on information on grid status to provide high job throughput in the presence of failure while

reducing the system overhead. Furthermore, a novel fault-tolerant algorithm combining checkpointing and replication is presented. The

proposed methods are evaluated in a newly developed grid simulation environment Dynamic Scheduling in Distributed Environments

(DSiDE), which allows for easy modeling of dynamic system and job behavior. Simulations are run employing workload and system

parameters derived from logs that were collected from several large-scale parallel production systems. Experiments have shown that

adaptive approaches can considerably improve system performance, while the preference for one of the solutions depends on

particular system characteristics, such as load, job submission patterns, and failure frequency.

Index Terms—Distributed systems, performance of systems, fault tolerance, availability.

Ç

1 INTRODUCTION

COMPARED to other distributed environments, such as
clusters, complexity of grids mainly originates from

decentralized management and resource heterogeneity. The
latter refers to hardware, as well as to foreseen utilization.
These characteristics often lead to strong variations in grid
availability, which in particular depends on resource and
network failure rates, administrative policies, and fluctua-
tions in system load. Apparently, runtime changes in
system availability can significantly affect application (job)
execution. Since for a large group of time-critical or time-
consuming jobs delay and loss are not acceptable, fault
tolerance should be taken into account.

Providing fault tolerance in a distributed environment,
while optimizing resource utilization and job execution
times, is a challenging task. To accomplish it, two
techniques are often applied: job checkpointing and job
replication. In this paper, it is argued that both techniques in
their pure static form are not able to cope with unexpected
load and failure conditions within grids. Therefore, several

solutions are proposed that dynamically adapt the check-

pointing frequency and the number of replicas as a reaction

on changing system properties (number of active resources

and resource failure frequency). Furthermore, a novel

hybrid scheduling approach is introduced that switches at

runtime between checkpointing and replication depending

on the system load. Decisions taken by the abovementioned

algorithms are primarily based not only on monitored grid

state but also on job characteristics and on collected

historical information. Currently, the proposed techniques

are limited to address hardware failure in grids running

applications composed of independent jobs.
Simulation-based experiments, using the discrete event

grid simulator Dynamic Scheduling in Distributed Environ-

ments (DSiDE) [1] and a data set derived from real-world

logs collected from different large-scale parallel production

systems [2], [3] have shown that the adaptive approaches

significantly improve distributed system performance. They

achieve throughput and fault tolerance comparable with

that of static checkpointing and replication with optimal

parameters. However, to make an appropriate choice

between strategies, some knowledge on system parameters

is still required. To deal with the latter issue, the hybrid

approach, combining the advantages of both techniques,

may be preferred.
The paper is organized as follows: Section 2 discusses

related work; Sections 3 elaborate on adaptive checkpoint-

ing and provides a simulation-based comparison between

different checkpointing approaches; Section 4, in turn,

discusses and compares replication-based and hybrid

scheduling solutions; while Sections 5 concludes the paper.

180 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2009

. M. Chtepen, B. Dhoedt, F. De Turck, and P. Demeester are with
the Ghent University—IBBT, Department of Information Technology,
Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium.
E-mail: {Maria.Chtepen, Bart.Dhoedt, Filip.Deturck, Piet.Demeester}@
intec.ugent.be.

. F.H.A. Claeys is with the CTO MOSTforWATER N.V., Koning Leopold
III-laan 2, 8500 Kortrijk, Belgium. E-mail: fc@mostforwater.com.

. P.A. Vanrolleghem is with the modelEAU, Departement Genie Civil,
Pavillon Pouliot, Universite Laval, Quebec, QC G1V 0A6, Canada.
E-mail: Peter.Vanrolleghem@gci.ulaval.ca.

Manuscript received 14 Aug. 2007; revised 1 Apr. 2008; accepted 14 May
2008; published online 22 May 2008.
Recommended for acceptance by F. Petrini.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-08-0278.
Digital Object Identifier no. 10.1109/TPDS.2008.93.

1045-9219/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 20:58 from IEEE Xplore. Restrictions apply.

2 RELATED WORK

A large number of research efforts have already been
devoted to fault tolerance in the scope of distributed
environments. Aspects that have been explored include
the design and implementation of fault detection services
[4], [5], as well as the development of failure prediction [3],
[6], [7], [8] and recovery strategies [9], [10], [11]. The latter
are often implemented through job checkpointing in
combination with migration and job replication. Although
both methods aim to improve system performance in the
presence of failure, their effectiveness largely depends on
tuning runtime parameters such as the checkpointing
interval and the number of replicas [12], [13], [14].
Determining optimal values for these parameters is far
from trivial, for it requires good knowledge of the
application and the distributed system at hand.

2.1 Checkpointing

To tackle the checkpointing overhead and scalability con-
cerns, different approaches are addressed in the literature.
One well-researched technique is known as incremental
checkpointing [15]. It reduces data stored during checkpoint-
ing to only blocks of memory modified since the last
checkpoint. In [16], a checkpointing-based fault-tolerant
protocol for MPI jobs is presented, which lowers the overhead
during normal execution and allows fast crash recovery by
using the ideas of message logging and object-based
processor virtualization. The latter limits the reexecution to
only the failed processor and allows to distribute the failed
work among the other processors. Clearly, this approach is
only applicable to homogeneous environments. Neverthe-
less, another important approach is based on determination
of the optimal checkpointing frequency and is called the
optimal checkpoint interval problem. Several researches have
addressed this problem [17], [18], [19], but they have
provided analytical solutions applicable only under specific
system assumptions. For instance, it is often assumed that
interoccurrence times of failures and repairs for each resource
are independent and exponentially distributed. In practice,
failures tend to cluster in time, while being caused by a
relatively small set of computational nodes [3], [7], [8]. Since
optimal solutions do not appear to be generally applicable,
static suboptimal solutions were addressed. For instance, in
[20], a min-max checkpoint placement method is introduced
that determines the suboptimal checkpoint sequence under
uncertain circumstances in terms of the system failure time
distribution. However, even if the (sub)optimal checkpoint-
ing interval is computed beforehand, the distributed system
or application parameters upon which the interval is based
will presumably change over time. Therefore, new forms of
checkpointing optimization were recently considered in
literature. One of them is the so-called cooperative check-
pointing concept, introduced in [21] and [22], which
addresses system performance and robustness issues by
allowing the application programmer, the compiler and the
runtime system to jointly decide on the necessity of each
checkpoint. The checkpointing algorithms proposed in this
paper are based on this concept and thus are cooperative
(adaptive) heuristics. In [23], another set of cooperative
checkpointing schemes is proposed that dynamically adjust
the checkpointing interval with as an objective timely job
completion in the presence of failure. The schemes use
information on remaining job execution time, time left before
the deadline, and the expected remaining number of failures

before job termination. The latter implies that the system
failure distribution should be known in advance. Katsaros et
al. [24], in turn, consider only dynamic checkpointing interval
reduction in case it leads to computational gain, which is
quantified by the sum of the differences between the means
for fault-affected and fault-unaffected job response times. In
[25], yet another adaptive fault management scheme (FT-Pro)
is discussed. Opposite to the combined approach proposed in
this paper that uses adaptive checkpointing in combination
with replication, FT-Pro combines adaptive checkpointing
with proactive process migration. The approach optimizes
application execution time by considering the failure impact
and the prevention costs. FT-Pro supports three prevention
actions: skip checkpoint, take checkpoint, and migrate. The
appropriate action is selected based on the predicted
frequency of failure. Therefore, the effectiveness of FT-Pro
strongly depends on the quality of this prediction.

2.2 Replication

Similar to deciding upon the best checkpointing interval,
finding a generally applicable procedure to calculate the
optimal number of job replicas is a complicated issue. Several
studies have attempted to address this problem [13], [26], but
unfortunately, they enforce a number of restrictions on the
execution environment, job interdependency, etc. Nowa-
days, most of the replication-based fault-tolerant algorithms
assume a fixed number of job duplicates. However, dynamic
solutions have recently started to receive attention. In [10], a
dynamic replication-based method is described, called
Workqueue with Replication (WQR). Initially, the algorithm
distributes a single copy of a job to random idle resources in
First Come, First Served (FCFS) order. When the job queue is
empty and the system has free resources, replication is
activated to cope with varying availability of hosts. The
disadvantage of this “delayed-copy” approach is that if a
system is heavily loaded for a long period, which is often the
case in large scientific or production grids, the replication will
be significantly delayed or not activated at all. Furthermore,
as was mentioned in [7], most of the failures in distributed
environments tend to occur during peak hours, when the
WQR failure prevention is turned off by definition. Other
interesting research on job replication is reported on in [27],
where a group-based dynamic replication mechanism for
peer-to-peer grid computing environments is proposed.
Whereas the algorithms introduced in our paper dynamically
vary the number of job replicas dependent on the system load,
the group-based approach determines the amount of replica-
tion taking into account the reliability of each volunteer
group, which is a group of resources with similar properties.

2.3 Combined Approaches

Several papers [28], [29] describe schemes that combine
checkpointing and job replication to deal with transient
fault detection. Transient faults are often hard to detect
because they do not result in a resource crash but only in a
job state modification, which however can lead to wrong
output. Therefore, duplicate jobs are executed on different
nodes, and their state is compared to track faults. The
checkpointing mechanism, in turn, serves two purposes:
preservation of a job state to reduce the fault-recovery time
and state comparison of job replicas. To our knowledge, no
work combining checkpointing and replication was per-
formed thus far with the objective of achieving better
resource utilization and improving job execution time.

CHTEPEN ET AL.: ADAPTIVE TASK CHECKPOINTING AND REPLICATION: TOWARD EFFICIENT FAULT-TOLERANT GRIDS 181

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 20:58 from IEEE Xplore. Restrictions apply.

3 ADAPTIVE CHECKPOINTING HEURISTICS

3.1 The Checkpointing Model

The grid model considered in this paper consists of
geographically dispersed computational sites (S), aggregat-
ing altogether 128 computational resources (CR) and a
number of general services (Fig. 1). The latter include a user
interface (UI), through which jobs are submitted into the
system; a scheduler (GSched) responsible for job-resource
matchmaking; an information service (IS), which collects job
and resource status information required by the GSched;
and a checkpoint server (CS), where checkpointing data is
made persistent (see Table 1 for a listing of acronyms). The
GSched invokes the matchmaking procedure within the
predefined scheduling interval IGSched, while the IS collects
changes in resource status with a delay IIS to reflect the
modification propagation time occurring in actual deploy-
ments. The grid sites reside within a Wide Area Network
(WAN), while resources belonging to a single site are
interconnected by Local Area Networks (LAN). Finally, it is
assumed that all grid management services are protected
against failure, and only CRs are unstable, with a resource
failure affecting all CPUs within a given CR. Contrary to the
traditional assumptions, considering failures to be inde-
pendent and equally spread over all system resources with
a particular distribution, failures in this work can be
spatially and temporarily correlated, which has proven to
be a more realistic presumption in case of large-scale
distributed systems [3], [7], [8].

In this model, the benefits of checkpointing are limited

by the following factors: the runtime overhead ðCÞ, which is

the time delay resulting from interruption of job execution

to perform checkpointing; the network latency ðLÞ (a time

interval between the checkpoint generation and its avail-

ability on the CS); and the recovery delay ðRÞ, which is the

time to download a failed job checkpoint from the CS to the

CR, where the job is rescheduled to run. The L and

R parameters are mainly determined by the available

network capacities, the distance between the CS and the

considered resource and checkpoint size. The values of both

parameters could be reduced by applying checkpoint

replication on multiple storage servers. However, this paper

concentrates on the reduction of the checkpointing runtime

overhead and therefore proposes several algorithms that

differentiate the checkpointing interval ðIÞ based on history

statistics and current status of a particular job and its

execution environment. By this means, we will, on one

hand, eliminate unnecessary checkpointing and, on the

other hand, introduce extra job state savings, where the

danger of failure is considered to be severe. More

specifically, the optimal checkpointing interval for a job

j ðIj
opt
Þ running on the computational node r depends on the

following parameters: Ej
r is the execution time of j on the

resource r (taking into account load of r); Fr is the average

time between failures of r; and CSj is the size of the j

checkpoint. Additionally, the value of Ijopt should satisfy the

inequality C þ Ijmin < Ijopt to be sure that jobs make execu-

tion progress despite of periodic checkpointing. Ijmin is the

minimum checkpointing interval of j, which should be

initialized with a default value, for example, a small

percentage of Ej
r. It is considered that after the Ijr interval

expires, either the next checkpointing event can immedi-

ately be performed by the application, or a flag is set

182 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2009

Fig. 1. Example grid architecture: UI (user interface), GSched (grid

scheduler), IS (information service), CS (checkpoint server), WAN (wide

area network), LAN (local area network).

TABLE 1
Listing of Used Acronyms and Symbols

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 20:58 from IEEE Xplore. Restrictions apply.

indicating that the checkpointing can be accomplished as

soon as the application is able to provide a consistent

checkpoint. Furthermore, it is important to notice that

deciding upon the job execution time is a complicated

problem, often requiring an application-specific approach

[30]. In our paper, the problem is simplified by assuming

that the execution time can be exactly determined in

advance. Therefore, the simulation results presented in the

following sections show the upper bounds of the algorithms

performance, with respect to this parameter. In the next

sections, the proposed algorithms are discussed in more

detail.

3.2 Last Failure Dependent Checkpointing
(LastFailureCP)

The main disadvantage of unconditional periodic job
checkpointing (PeriodicCP) is that it performs identically
whether the job is executed on a volatile or on a stable
resource. The goal of LastFailureCP is to reduce the
overhead introduced by excessive checkpointing in rela-
tively stable distributed environments, i.e., the algorithm
omits unnecessary checkpoints of the job j based on its
estimated total execution time and the failure frequency of
the resource r to which j is assigned (see Fig. 2a). For each
resource, the algorithm keeps a time stamp LFr of its last
detected failure (Step 1). When no failure has occurred, LFr
is initiated with the system start time. After an execution
interval I, each job running on an active resource generates
a checkpointing request (Step 2). The request is subse-
quently evaluated by the GSched and it is allowed only if
the comparison tc � LFr � Ej

r evaluates to true (Step 3),
where tc is the current system time. As was previously
mentioned, each checkpoint generation leads to runtime
overhead C, which prolongs the execution of j (Step 3). If
tc � LFr > Ej

r, the checkpoint is omitted to avoid the
overhead as it is assumed that the resource is “stable”
(Step 4). To prevent excessively long checkpoint suspen-
sion, a maximum number of omissions can be defined.

3.3 Mean Failure Dependent Checkpointing
(MeanFailureCP)

Contrary to LastFailureCP that only considers checkpoint
omissions, MeanFailureCP dynamically modifies the initially
specified checkpointing frequency to deal with inappropriate
checkpointing intervals (see Fig. 2b). The algorithm modifies
the checkpointing interval based on the runtime information
on the remaining job execution time ðREj

rÞ and the average
failure interval ðMFrÞ of the resource r where the job j is
assigned, which results in a customized checkpointing
interval Ijr . The use ofMFr, instead of LFr, reduces the effect

of an individual failure event. While PeriodicCP and
LastFailureCP are first run after the expiration of the
predefined checkpointing interval, the MeanFailureCP acti-
vates checkpointing within a fixed and preferably short time
period ti after the beginning of a job execution (Step 1). The
latter approach opens the possibility to modify the check-
pointing frequency at the early stage of job processing. Each
time the checkpointing is performed, Ijr is adapted as follows:
IfREj

r < MFr and Ijr < �� Ej
r, where� < 1, the frequency of

checkpointing will be reduced by increasing the checkpoint-
ing interval Ijnewr ¼ Ijoldr þ I (Step 2). The first inequality in the
condition ensures that either r is sufficiently stable or the job is
almost finished, while the second limits the excessive growth
of Ijr compared to the job length. The latter can particularly be
important for short jobs, for which the first condition almost
always evaluates to true. On the other hand, when the
abovementioned inequalities are not satisfied, it seems to be
desirable to decrease Ijr and thus to perform checkpointing
more frequently Ijnewr ¼ Ijoldr � I (Step 3). When reducing the
checkpointing interval, the following constraint should be
taken into account: C < Imin � Ijnewr . Imin is a predefined
value, which secures that the time between consecutive
checkpoints is never less than the time overhead added by
each checkpoint. In case of stable grid systems, it is desirable
to choose relatively large values for Imin (5 percent-10 percent
of the total job length) to prevent an undesirably steep
decrease of the checkpointing interval. Experiments have
shown that gradually incrementing Ijr by I ensures rapid
achievement of Iopt in most distributed environments.
However, in case of rather reliable grids, the calibration of
Ijr can be accelerated by replacing I with a desirable
percentage of the job execution time.

3.4 DSiDE Simulation Environment

Since grids are complex and often unpredictable environ-
ments, it is difficult to build a grid testbed on a realistic
scale for validation and calibration of grid scheduling
strategies. Therefore, the algorithms proposed in this paper
were validated using a newly developed discrete event grid
simulator named DSiDE. The main reason behind the
development of DSiDE was a need for a simulator that
provides maximum flexibility with respect to the imple-
mentation of dynamic behavior of grid resources and jobs.
Regardless of the fact that there exists a broad spectrum of
grid simulation frameworks, examples of which include
GridSim [31], SimGrid [32], and NSGrid [33], none of them
are well suited for this study because of their limited
possibilities for modeling distributed system dynamics.

The DSiDE architecture is composed of two separate
modules: DExec and DGen (Fig. 3). DExec implements a
grid simulation environment, consisting of computational

CHTEPEN ET AL.: ADAPTIVE TASK CHECKPOINTING AND REPLICATION: TOWARD EFFICIENT FAULT-TOLERANT GRIDS 183

Fig. 2. (a) Operation of LastFailureCP on a resource running a single job. (b) Operation of MeanFailureCP on a resource running a single job.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 20:58 from IEEE Xplore. Restrictions apply.

and storage resources, and general grid services (UI,
GSched, IS, and CS). Various scheduling policies can be
plugged into the module in the form of Dynamically Linked
Libraries (DLLs). DGen, in turn, is responsible for translat-
ing the initial, XML-based simulation scenario into a set of
individual XML events. The initial specification allows the
end user to create the desired grid model and a correspond-
ing simulation scenario in a relatively short and convenient
form. The DExec kernel is a standard discrete event kernel
consisting of a clock and future (FEC) and current event
chains (CEC). Each DSiDE event has a time stamp, i.e., an
indication of the event execution time. This time stamp can
be provided a priori or at runtime. In the latter case, a
particular distribution (uniform, exponential, normal, etc.)
of the event generation is specified. In addition to standard
events, such as resource and job registration, DSiDE
supports several types of dynamic system modifications,
including alternating resource availability. The latter is
modeled as a sequence of failure and restore events
occurring with particular distributions. Failure events can
either be correlated or independent. Therefore, the total grid
resource availability, which is the percentage of time during
which the resource performed useful computations, can be
defined as

Ar ¼ 1�
XN
n¼1

tfr;n � trr;n
� �

=Tsim

 ! !
� 100

 !
; ð1Þ

where N is the number of resource failures; ðtfr;nÞ and ðtrr;nÞ
are respectively the time stamp of the resource failure and
restore; and Tsim is the total simulation time. From the
individual resource availability, total grid availability is
computed as follows:

Agrid ¼
XR
r¼1

Ar

 !
=ðTsim �RÞ

 !
� 100; ð2Þ

where R is the number of resources in the grid. Finally,
DSiDE provides a set of events to specify network links and
routes (sequence of links), which form the network model

of the simulator. The DSiDE network is similar to the
SimGrid network model, which differentiates between two
types of links: WAN or Internet links, and LAN or intrasite
links. WAN links are assumed to be fully interconnected
with equal bandwidth assigned to each route going through
them (a small fraction of the total bandwidth). On the other
hand, intrasite links are always organized into a tree
topology, and the available bandwidth is proportionally
shared among the simultaneous active data transfers [34].
This simple model has proven to be a good approximation
for real network behavior [35], while preserving relatively
low computational complexity and short simulation times.
Currently, it is assumed that the modeled network is fully
reliable and thus failures can only originate from the
connected CRs.

3.5 Simulation Results

To compare the performance of the proposed checkpoint-
ing heuristics, realistic workload, and system failure
models, derived from production grid logs, were utilized.
More specifically, the submitted workload follows the
Lublin job generation model [36], where execution of batch
jobs running on a single node was assumed. In this
simulation scenario, the model parameters are initialized
to represent a heavily loaded grid system with a daily cycle
job arrival pattern. Fig. 4a depicts the proportion of jobs
submitted into the grid system each hour, during an
observation period of 24 hours. Apparently, most of the
jobs (almost 80 percent) arrive during the daytime, while
the remaining 20 percent are submitted between 9 p.m. and
7 a.m. The runtimes of the submitted jobs vary, as shown in
Fig. 4b, where 11 categories of job lengths (from less than
an hour to more than 10 hours) are differentiated. More
than 80 percent of all submitted jobs have medium
execution times, varying from 1 hour to 6 hours. Further-
more, to simplify the comparison between different
algorithms, it is assumed that all jobs use inputs and
outputs of 10 Mbytes; and a job checkpointing delay varies
from 100 ms to 5 seconds, depending on the execution time.

The abovedescribed workload is submitted into the grid
system discussed in Section 3.1. The system parameters are
set as follows: WAN links have equal bandwidth of
100 Mbit/s and latency varying from 3 to 10 ms; CRs
inside the sites communicate through LAN networks
arranged into a star topology, with link bandwidths of
100 Mbit/s and latency of 1 ms; GSched is run every
5 minutes, while the longest propagation delay for the IS is
initialized to 10 min; and finally, each CR has 1 MIPS CPU
speed and is limited to process at most two jobs
simultaneously. Failure and restore patterns of the grid
resources follow the model represented in [3]. These models
are constructed based on the analysis of failure data
collected over the past nine years at the Los Alamos
National Laboratory, which is currently one of the largest
high-performance computing sites worldwide. In the grid
environment considered, each of the four sites is modeled to
posses different failure and restore behavior. Failure
frequency ranges over the sites from several hours to
several weeks and is modeled by a Weibull distribution
with decreasing hazard rate. Mean repair time, in turn,
varies across the sites from less than an hour to more than a
day and is modeled by a logarithmic distribution. The
considered grid system has a total availability of 90 percent.

184 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2009

Fig. 3. The DSiDE simulator architecture.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 20:58 from IEEE Xplore. Restrictions apply.

The grid model described was observed during seven days
of simulated time. Figs. 5a, 5b, 5c, and 5d show a comparison
between the performance of the proposed dynamically
adapting heuristics and the PeriodicCP approach for a
randomly varying initial checkpointing interval ðIÞ. From
the figures, it is clear that the efficiency of PeriodicCP strongly
depends on the chosen value of I, which remains constant
during the simulation. For instance, overly frequent and
scarce checkpointing can result in up to 40 percent decrease in
number of processed jobs, compared to the best achieved
situation and significantly increase the average job execution
time. Furthermore, in Fig. 5c, it can be observed that at high
checkpointing frequencies, the average job length signifi-
cantly decreases. This relates to the fact that exaggerated
checkpointing substantially prolongs job execution, and
therefore, only short jobs finish within the observed time

interval. However, when I decreases and longer jobs can get
processed, an increase in job runtime is in effect.

The results achieved with PeriodicCP are partially
improved by LastFailureCP due to omission of redundant
checkpoints. Apparently, the technique provides the best
results for short checkpointing intervals. Since the algo-
rithm does not consider checkpoint insertion, it performs
slightly worse than PeriodicCP for large values of I.
However, in the latter case, the effectiveness of LastFailur-
eCP strongly depends on failure periodically. In the best
case, when failures occur quite periodically and thus can
easily be predicted by the algorithm, LastFailureCP will
perform similar to PeriodicCP.

Finally, the fully dynamic scheme of MeanFailureCP
proves to be the most effective. Starting from a random
checkpointing frequency, it results in a number of executed
jobs and average job runtime that are close to the results

CHTEPEN ET AL.: ADAPTIVE TASK CHECKPOINTING AND REPLICATION: TOWARD EFFICIENT FAULT-TOLERANT GRIDS 185

Fig. 4. Lublin workload model. (a) Job arrival pattern with daily cycle. (b) Job execution time distribution.

Fig. 5. Checkpointing heuristics performance for varying initial checkpointing interval: (a) number of successfully executed jobs, (b) average number

of checkpoints initiated by different heuristics, (c) job average runtime, and (d) job average length.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 20:58 from IEEE Xplore. Restrictions apply.

achieved by PeriodicCP with the best performing check-
pointing interval. It is important to notice the slight decrease
in the number of checkpoints taken by MeanFailureCP as I
is getting closer to the best performing checkpointing
values. This decrease can be explained by a shorter
calibration period required to achieve the “optimal” value
of I. On the other hand, for large values of I, an increase in
the number of generated checkpoints is observed, which is
the consequence of the constraint Imin � Ijr < �� Ej

r, where
Imin and � were initialized with, respectively, 0:01� Ej

r and
Ej
r. When Ijr grows, this restriction evaluates to false for a

larger part of jobs, and therefore, their adapted checkpoint-
ing interval starts to decrease, resulting in more checkpoints
performed. As can be seen from the simulation results, this
selective increase in checkpointing keeps the number of
processed jobs and the average execution time of Mean-
FailureCP more or less constant, while in the case of the
PeriodicCP and LastFailureCP algorithms, the performance
drops considerably.

4 REPLICATION-BASED HEURISTICS

4.1 Load-Dependent Replication
(LoadDependentRep)

Providing fault tolerance in distributed environments
through replication has as an advantage that otherwise idle
resources can be utilized to run job copies without
significantly delaying the execution of the original job.
Obviously, the more job copies are running on the grid, the
larger is the chance that one of them will execute
successfully. On the other hand, running additional replicas
on a distributed environment with an insufficient number of
free resources can considerably reduce throughput and
prolong job execution. To deal with this dilemma, the
proposed heuristic considers the system load and postpones
or reduces replication during peak hours. The algorithm
requires a number of parameters to be provided in advance,
i.e., the minimum ðRepminÞ and maximum ðRepmaxÞ number
of job copies, and the CPU limit ðCLÞ. The latter parameter
specifies the lower bound on the number of active free
CPUs for replication to take place. An example of the
heuristic operation is shown in Fig. 6a, where the required
parameters are initialized as follows: Repmin and Repmax are
set respectively to 1 and 2; and CL is equal to two CPUs. In
each iteration, the GSched consults the IS for the system
status (Step 1). Based on this information, CA and CL are
compared, where CA is the number of active CPUs able to

execute the next job. The outcome of the comparison
determines the choice for the next job to be scheduled:

. CACA � CLCL. Select a job j with the earliest arrival time
stamp and the number of active replicas less than
Repmax (Step 1).

. 0 < CACA < CLCL. Select a job j with the earliest arrival
time stamp and the number of active replicas less
than Repmin (Step 2).

. CACA ¼ 0. Skip the current scheduling round (Step 3).

However, even if the grid system is heavily loaded, it can be
desirable to consider Repmin > 1, since the failure rate of
resources in distributed environments increases with the
intensity of the workload running on them. When one of the
job duplicates finishes, other replicas are automatically
canceled (Step 4). If the system load decreases before the job
was executed, the remaining Repmax �Repmin replicas are
activated (Step 5).

The algorithm assigns the selected job j to the site S with
some free resources and with the smallest number of
j replicas (Step 1, Step 5), since spreading replicas over
different sites increases the probability that one of them will
be successfully executed. If multiple sites have an equal
number of job copies, a site that can provide for the fastest
job execution is preferred. The speed or capacity of a site is
defined as

SpeedS ¼
X
r2S

MIPSr

 !, X
r2S

nr

 !
þ 1

 !
; ð3Þ

where Million Instructions Per Second (MIPSr) is the speed
of r, and nr is the number of jobs on r. In the above
equation, only resources executing no other replicas of j are
taking into account. Distribution of similar replicas to a
single CR is avoided because it is assumed that CPUs inside
a single node have more chance to fail simultaneously in
case of the resource malfunction. Therefore, inside the
chosen site, the job will be submitted to the fastest available
resource with no identical job replicas. If no such resource
exists, the distribution of j is postponed, and the next job
from the GSched queue is scheduled. The resource speed is
determined by

Speedr ¼ MIPSr=ðnr þ 1Þ: ð4Þ

4.2 Failure Detection and Load Dependent
Replication (FailureDependentRep)

To increase the fault tolerance of the previously discussed
LoadDependentRep heuristic, the approach was combined

186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2009

Fig. 6. (a) Operation of LoadDependentRep on a distributed environment consisting of two resources, each able to run two jobs simultaneously.

Repmax ¼ 2, Repmin ¼ 1 and CL ¼ 2. (b) Operation of CombinedFT on a distributed environment consisting of two resources, each able to run two

jobs simultaneously. Repmax ¼ 2, Repmin ¼ 1 and CL ¼ 2. The PeriodicCP method is applied in the checkpointing mode.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 20:58 from IEEE Xplore. Restrictions apply.

with a failure-detection technique. The principle of failure
detection is straightforward: as soon as a resource failure is
discovered by the GSched, all jobs submitted to the failed
resource are redistributed. The algorithm proceeds as
LoadDependentRep, except that in each scheduling round,
not only newly arrived jobs are considered for submission
to a CR, but also all jobs distributed to failed nodes. To
construct a list of active CRs, GSched queries the IS.
However, in order for a resource failure to be detected, the
restore time should exceed IIS þ IGSched. This means that
although the method offers a higher level of fault tolerance
compared to solely replication-based strategies, it does not
ensure job execution.

4.3 Adaptive Checkpoint and Replication-Based
Fault Tolerance (CombinedFT)

In this section, a combined checkpointing and adaptive
replication-based scheduling approach is considered that
dynamically switches between both techniques based on
runtime information on system load. The algorithm can be
particularly advantageous for grids with frequent or
unpredictable alternations between peak hours and idle
periods. In the first case, replication overhead can be
avoided by switching to checkpointing, while in the second
case, the checkpointing overhead is reduced by using low-
cost replication. An example of the CombinedFT heuristic
operation is shown in Fig. 6b, where the required
parameters are initialized as follows: Repmin and Repmax
are set respectively to 1 and 2; and CL is equal to two CPUs.

When the CPU availability is low ðCA < CLÞ, the
algorithm is in checkpointing mode (Step 1). In this mode,
CombinedFT rolls back, if necessary, the earlier distributed
active job replicas ðARjÞ and starts job checkpointing. When
processing the next job j, the following situations can occur:

. ARARjj > 0. Start checkpointing the most advanced
active replica and cancel the execution of other
replicas (Step 1).

. ARARjj ¼ 0 and CACA > 0. Start j on the least loaded
available resource within the least loaded site,
determined respectively by (2) and (1) (Step 2).

. ARARjj ¼ 0 and CACA ¼ 0 and 9ii : ARARii > 1. Select a
random replicated job i if any, start checkpointing
its most advanced active replica, cancel execution of
other replicas of i, and submit j to the best available
resource (Step 3).

. ARARjj ¼ 0 and CACA ¼ 0 and :9ii : ARARii > 1. Skip the
current scheduling round (Step 4).

The algorithm switches to replication mode when either
the system load decreases or enough resources restore from
failure ðCA � CLÞ (Step 5). In replication mode, all jobs
with less than Repmax replicas are considered for submis-
sion to the available resources, in the order defined by the
FailureDependentRep algorithm (see Section 4.1). When a
job j is selected, it is assigned to the fastest resource (with
no similar job replicas) connected to a grid site S with the
maximum SpeedS and the smallest number of identical
replicas. If j was previously in checkpointing mode and the
replication completed successfully, the checkpointing of j is
switched off (Step 6).

4.4 Simulation Results

In this section, the performance of the replication-based and
hybrid approaches is compared against the performance of

the best checkpointing heuristic (MeanFailureCP). The
comparison is performed within grid systems with varying
load and availability. Four replication algorithms are
considered: UnconditionalRep(2), unconditional job replica-
tion with two job copies, UnconditionalRep(3), unconditional
job replication with three copies, LoadDependentRL(1, 3, 40)
adaptive replication with the minimum ðRepminÞ and
maximum ðRepmaxÞ number of job replicas set to, respec-
tively, 1 and 3, and the free CPU limit initialized to 40
(approximately 1/3 of the total grid capacity) FailureDepen-
dentRep(1, 3, 40), failure detection and adaptive replication-
based algorithm with the same parameters as LoadDepen-
dentRep. Also, the performance of FCFS (or Unconditional-
Rep(1)) was observed to serve as a reference for comparison
with the other algorithms. The combined approach (Combi-
nedFT) is initialized with the same replication parameters as
FailureDependentRep and switches in the checkpointing
mode to the MeanFailureCP approach. The chosen para-
meter values for the replication-based heuristics are not
necessarily optimal, but they are believed to be reasonable for
the case at hand. The term “unconditional job replication
algorithm” refers to an algorithm that sequentially processes
jobs arriving to the GSched, based on the time stamp of their
arrival. Independent of the current system load, the
algorithm creates for each job a predetermined number of
replicas that are assigned to different available resources,
until all resources are filled.

The algorithms are evaluated for high and low grid
loads, which are accomplished by varying the job submis-
sion parameters of the Lublin model (see Section 3.5). In
the case of high grid load, the same model parameters are
utilized as the ones applied in the simulation scenario of
the Section 3.5. In this scenario, about 7,000 jobs arrive into
the system during the observation period of seven days
(simulated time), which leads to long periods of system
overload alternating with relatively short “idle” time
intervals. In the case of low grid load, jobs are generated
occasionally (about 700 during seven days of simulated
time), while most of the time, a large part of the resources
remains idle. To warrant low system utilization, also the
average job length is reduced from 2.5 hours in the first
scenario to 0.3 hour in the latter. The size of job input and
output data in both simulation scenarios is set to 10 Gbytes
to yield large data volumes often generated by real-world
computationally intensive applications. Finally, varying
system availability is achieved by modifying the para-
meters of the Weibull distribution within Schroeder and
Gibson’s model (for more details, see Section 3.5). It is
again considered that each site possess different failure
and restore patterns, with failure and restore intervals
varying respectively from 2 hours to a week and from
30 minutes to a day.

Figs. 7a, 7b, 7c visualize the evaluated scheduling
methods’ performance on a highly loaded grid, while
Figs. 8a, 8b, 8c summarize the results for low grid load. The
following system parameters are observed: number of
successfully executed/lost jobs, average job execution time,
and average job length. It is Important to notice that a
replicated job is assumed to be lost when all its replicas
were started and afterwards failed.

For heavily, as well as lightly loaded grids with relatively
low availability, additional replication clearly provides
better system performance and lower job loss rate. This is

CHTEPEN ET AL.: ADAPTIVE TASK CHECKPOINTING AND REPLICATION: TOWARD EFFICIENT FAULT-TOLERANT GRIDS 187

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 20:58 from IEEE Xplore. Restrictions apply.

the consequence of the fact that replication-related overhead

is compensated by increased grid reliability and conse-

quently by a higher ratio of successfully executed jobs.

However, as the grid availability improves (95 percent),

additional replication provided by UnconditionalRep(2)

and UnconditionalRep(3) leads to system throughput

reduction. This reduction is getting more significant as the

grid load increases and resources become more scarce. The

188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2009

Fig. 7. Performance of replication-based, checkpointing-based, and

hybrid algorithms on heavily loaded grids with varying availability:

(a) number of successfully executed jobs, (b) number of jobs lost,

(c) average job runtime, and (d) average job length.

Fig. 8. Performance of replication-based, checkpointing-based, and

hybrid algorithms on grids with low load: (a) number of successfully

executed jobs, (b) number of jobs lost, (c) average job runtime,

(d) average job length.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 20:58 from IEEE Xplore. Restrictions apply.

results for LoadDependentRep show that the performance
of unconditional replication can be improved by postponing
the execution of additional replicas during the peak hours.
The higher the system load, the more gain can be achieved
from the postponement (see Fig. 7a). On the other hand, for
slightly loaded systems (see Fig. 8a), LoadDependentRep
performs only slightly better than UnconditionalRep(2),
since replication almost never has to be delayed. The main
advantage of FailureDependentRep is certainly its high
reliability in absence of sophisticated mechanisms for
providing fault tolerance. Implementation of the algorithm
requires only a replica counter and a simple job monitoring
facility. Another benefit is that failure-sensitive long jobs
have a higher chance to finally get processed due to the
restart mechanism (see longer average job lengths in Figs. 7d
and 8d). The disadvantage of FailureDependentRep is the
slower grid performance (larger average execution times) as
a result of the postponed replication in combination with the
runtime overhead related to repetitive restart of failed jobs
(see Figs. 7c and 8c). However, lightly loaded systems are
less sensitive to this last disadvantage since, most of the
time, enough computational resources are available, and
thus, multiple job restarts do not penalize the execution of
other jobs. In the condition of high load, the fully fault-
tolerant MeanFailureCP results in the best system through-
put compared to the other considered heuristics. This is the
consequence of the considerable overhead introduced by the
execution of additional replicas in an overloaded grid
system. On the other hand, the average job execution time
in case of the checkpointing approach is always relatively
high, which leads to the algorithm performance reduction in
the lightly loaded grid, where replication provides for
almost costless fault tolerance. However, it is important to
notice that the exact relation between the performance of the
checkpointing and the replication-based solutions is largely
determined not only by the system load but also by the
runtime cost of checkpointing and the size of job input and
output data. Finally, the throughput and average job
execution times generated by CombinedFT for both types
of system load are located, as can be observed in Figs. 7a and
7c, and Figs. 8a and 8c between, respectively, the through-
puts and average job execution times of FailureDependen-
tRep and MeanFailureCP. This is the logical consequence of
the fact that job submissions are clustered in time and that
the heuristic performs some calibrations, after each varia-
tion in the system load, before achieving its “optimal” state.
Regarding the other observed performance parameters,
CombinedFT is almost fully fault-tolerant and results in
one of the best average job lengths among the considered
algorithms.

5 CONCLUSION AND FUTURE WORK

Fault tolerance forms an important problem in the scope of
grid computing environments. To deal with this issue,
several adaptive heuristics, based on job checkpointing,
replication, and the combination of both techniques, were
designed. The heuristics were evaluated in the DSiDE grid
simulator under varying system load and availability. The
results have shown that the runtime overhead characteristic
to periodic checkpointing can significantly be reduced
when the checkpointing frequency is dynamically adapted
in function of resource stability and remaining job execution

time. Furthermore, adaptive replication-based solutions can

provide for even lower cost fault tolerance in systems with

low and variable load by postponing replication in function

of system parameters. Finally, the advantages of both

techniques are combined in the hybrid approach that can

best be applied when the distributed system properties are

not known in advance.
In the following phase of our research, scheduling

methods will be considered that adapt to dynamically

changing estimations of job execution time.

REFERENCES

[1] M. Chtepen, F. Claeys, B. Dhoedt, F. De Turck, P. Vanrolleghem,
and P. Demeester, “Dynamic Scheduling of Computationally
Intensive Applications on Unreliable Infrastructures,” Proc. Second
European Modeling and Simulation Symp. (EMSS ’06), Oct. 2006.

[2] D. Feitelson, Parallel Workloads Archive, http://www.cs.huji.ac.il/
labs/parallel/workload/, 2008.

[3] B. Schroeder and G. Gibson, “A Large-Scale Study of Failures in
High-Performance-Computing Systems,” Proc. Int’l Conf. Depend-
able Systems and Networks (DSN ’06), June 2006.

[4] S. Hwang and C. Kesselman, “A Flexible Framework for Fault
Tolerance in the Grid,” J. Grid Computing, vol. 1, no. 3, pp. 251-272,
Sept. 2003.

[5] A. Subbiah and D. Blough, “Distributed Diagnosis in Dynamic
Fault Environments,” Parallel and Distributed Systems, vol. 15, no. 5,
pp. 453-467, 2004.

[6] Y. Derbal, “A New Fault-Tolerance Framework for Grid Comput-
ing,” Multiagent and Grid Systems, vol. 2, no. 2, pp. 115-133, 2006.

[7] Y. Zhang, M. Squillante, A. Sivasubramaniam, and R. Sahoo,
“Performance Implications of Failures in Large-Scale Cluster
Scheduling,” Proc. 10th Workshop Job Scheduling Strategies for
Parallel Processing (JSSPP ’04), pp. 233-252, 2004.

[8] A. Oliner and J. Stearley, “What Supercomputers Say: A Study of
Five System Logs,” Proc. 37th Ann. IEEE/IFIP Int’l Conf. Dependable
Systems and Networks (DSN ’07), pp. 575-584, June 2007.

[9] A. Dogan and F. Osgunger, “Matching and Scheduling Algo-
rithms for Minimizing Execution Time and Failure Probability of
Applications in Heterogeneous Computing,” Parallel and Distrib-
uted Systems, vol. 13, no. 3, pp. 308-323, 2002.

[10] D. Silva, W. Cirne, and F. Brasileiro, “Trading Cycles for
Information: Using Replication to Schedule Bag-of-Tasks Applica-
tions on Computational Grids,” Proc. Int’l Conf. Parallel and
Distributed Computing (Euro-Par ’03), pp. 169-180, Aug. 2003.

[11] R. De Camargo, A. Goldchleger, F. Kon, and A. Goldman,
“Checkpointing-Based Rollback Recovery for Parallel Applica-
tions on the InteGrade Grid Middleware,” Proc. Second Workshop
Middleware for Grid Computing (MGC ’04), pp. 35-40, 2004.

[12] A. Oliner, R. Sahoo, J. Moreira, and M. Gupta, “Performance
Implications of Periodic Checkpointing on Large-Scale Cluster
Systems,” Proc. 19th IEEE Int’l Parallel and Distributed Processing
Symp. (IPDPS ’05), Apr. 2005.

[13] Y. Li and M. Mascagni, “Improving Performance via Computa-
tional Replication on a Large-Scale Computational Grid,” Proc.
Third Int’l Symp. Cluster Computing and the Grid (CCGrid ’03),
May 2003.

[14] C. Bossie and P. Fiorini, “On Checkpointing and Heavy-Tails in
Unreliable Computing Environments,” SIGMETRICS Performance
Evaluation Rev., vol. 34, no. 2, pp. 13-15, 2006.

[15] S. Agarwal, R. Garg, M. Gupta, and J. Moreira, “Adaptive
Incremental Checkpointing for Massively Parallel Systems,” Proc.
18th Ann. Int’l Conf. Supercomputing (SC ’04), Nov. 2004.

[16] S. Chakravorty and L. Kale, “A Fault Tolerance Protocol with Fast
Fault Recovery,” Proc. IEEE Int’l Parallel and Distributed Processing
Symp. (IPDPS ’07), Mar. 2007.

[17] J. Young, “A First Order Approximation to the Optimum
Checkpoint Interval,” Comm. ACM, vol. 17, no. 9, pp. 530-531,
Sept. 1974.

[18] E. Gelenbe, “On the Optimum Checkpoint Interval,” J. ACM,
vol. 26, no. 2, pp. 259-270, Apr. 1979.

[19] A. Tantawi and M. Ruschitzka, “Performance Analysis of
Checkpointing Strategies,” ACM Trans. Computer Systems, vol. 2,
no. 2, pp. 123-144, May 1984.

CHTEPEN ET AL.: ADAPTIVE TASK CHECKPOINTING AND REPLICATION: TOWARD EFFICIENT FAULT-TOLERANT GRIDS 189

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 20:58 from IEEE Xplore. Restrictions apply.

[20] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Min-Max
Checkpoint Placement under Incomplete Failure Information,”
Proc. Int’l Conf. Dependable Systems and Networks (DSN ’04),
June-July 2004.

[21] A. Oliner, L. Rudolph, and R. Sahoo, “Cooperative Checkpointing:
A Robust Approach to Large-Scale Systems Reliability,” Proc. 20th
Ann. Int’l Conf. Supercomputing (SC ’06), June-July 2006.

[22] A. Oliner and R. Sahoo, “Evaluating Cooperative Checkpointing
for Supercomputing Systems,” Proc. 20th Int’l Parallel and
Distributed Processing Symp. (IPDPS ’06), Apr. 2006.

[23] Y. Xiang, Z. Li, and H. Chen, “Optimizing Adaptive Checkpoint-
ing Schemes for Grid Workflow Systems,” Proc. Fifth Int’l Conf.
Grid and Cooperative Computing (GCC ’06), Oct. 2006.

[24] P. Katsaros, L. Angelis, and C. Lazos, “Performance and
Effectiveness Trade-Off for Checkpointing in Fault-Tolerant
Distributed Systems,” Concurrency and Computation: Practice and
Experience, vol. 19, no. 1, pp. 37-63, 2007.

[25] Y. Li and Z. Lan, “Using Adaptive Fault Tolerance to Improve
Application Robustness on the TeraGrid,” Proc. TeraGrid Conf.,
June 2007.

[26] C. Hou and K. Shin, “Replication and Allocation of Task Modules
in Distributed Real-Timesystems,” Proc. 24th Int’l Symp. Fault-
Tolerant Computing (FTCS ’94), June 1994.

[27] S. Choi, M. Baik, J. Gil, C. Park, S. Jung, and C. Hwang, “Group-
Based Dynamic Computational Replication Mechanism in Peer-to-
Peer Grid Computing,” Proc. Sixth IEEE Int’l Symp. Cluster
Computing and the Grid (CCGRID ’06), May 2006.

[28] A. Ziv and J. Bruck, “Performance Optimization of Checkpointing
Schemes with Task Duplication,” IEEE Trans. Computers, vol. 46,
no. 12, pp. 1381-1386, Dec. 1997.

[29] D. Pradhan and N. Vaidya, “Roll-Forward Checkpointing Scheme:
A Novel Fault-Tolerant Architecture,” IEEE Trans. Computers,
vol. 43, no. 10, pp. 1163-1174, Oct. 1994.

[30] M. Hajdukovic, Z. Suvajdzin, Z. Zivanov, and E. Hodzic, “A
Problem of Program Execution Time Measurement,” Novi Sad
J. Math., vol. 33, no. 1, pp. 67-73, 2003.

[31] R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling
and Simulation of Distributed Resource Management and
Scheduling for Grid Computing,” J. Concurrency and Computation:
Practice and Experience, vol. 14, nos. 13-15, Wiley, Nov.-Dec. 2002.

[32] A. Legrand, L. Marchal, and H. Casanova, “Scheduling
Distributed Applications: The SimGrid Simulation Frame-
work,” Proc. Third Int’l Symp. Cluster Computing and the Grid
(CCGrid ’03), May 2003.

[33] P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, and
P. Demeester, “Evaluation of Grid Scheduling Strategies
through NSGrid: A Network-Aware Grid Simulator,” J. Neural,
Parallel and Scientific Computations, special issue on grid
computing, vol. 12, no. 3, pp. 353-378, 2004.

[34] F. Kelly, “Charging and Rate Control for Elastic Traffic,” European
Trans. Telecomm., vol. 8, pp. 33-37, 1997.

[35] H. Casanova and L. Marchal, “A Network Model for Simulation of
Grid Application,” technical report, �Ecole Normale Supérieure de
Lyon, Laboratoire de l’Informatique du Parallélisme, 2002.

[36] U. Lublin and D. Feitelson, “The Workload on Parallel
Supercomputers: Modeling the Characteristics of Rigid Jobs,”
Parallel and Distributed Computing, vol. 63, no. 11, pp. 1105-1122,
Nov. 1992, 2003.

Maria Chtepen received the MSc degree in
computer science from Ghent University in
2004. She is a research assistant with the Fund
of the Institute for Innovation and Technology
(IWT), Department of Information Technology,
Ghent University. Her main research interest
include distributed systems and their perfor-
mance optimization.

Filip H.A. Claeys received the MSc degree in
computer science from Ghent University in 1992
and the MSc degree in artificial intelligence from
K.U. Leuven in 1995. He currently works as a
senior software engineer for MOSTforWATER
N.V. and leads a research group on modeling
software tools at Ghent University.

Bart Dhoedt received the PhD degree in
engineering from Ghent University in 1995. In
1997, he became professor at the Faculty of
Applied Sciences, Department of Information
Technology. His research interests are software
engineering and distributed computing. He is the
author of approximately 150 peer-reviewed
papers. He is a member of the IEEE and the
IEEE Computer Society.

Filip De Turck received the PhD degree in
electronic engineering from Ghent University. At
the moment, he is a professor at the Department
of Information Technology, Ghent University. He
is author of 120 peer-reviewed papers. His main
research interests include scalable and resilient
software architectures and distributed comput-
ing. He is a member of the IEEE and the IEEE
Computer Society.

Piet Demeester received the PhD degree from
Ghent University in 1988. In 1992, he started a
new research activity on broadband communi-
cation networks, resulting in the IBCN Group
(INTEC Broadband communications network
research group). In 1993, he became professor
at Ghent University. His research activities cover
various communication networks, including net-
work and service management. He is the author
of more than 500 publications and a member of

the editorial board of several international journals. He is a senior
member of the IEEE and the IEEE Computer Society.

Peter A. Vanrolleghem received the PhD
degree. He is a bioengineer. He is a former
head of the BIOMATH research team at Ghent
University and has ample experience with
modeling, monitoring, and control of wastewater
treatment systems. He has more than 175 peer-
reviewed papers and is very active within the
International Water Association.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2009

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 20:58 from IEEE Xplore. Restrictions apply.

