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Numerical solver uncertainty is high when the solutions of the differential equations of a model,

computed with different numerical solvers, deviate from each other. Numerical solver uncertainty

is a serious limiting factor of the simulation process and can lead to incorrect model predictions.

This problem is especially critical because the correct solution trajectory of environmental

models, often consisting of large systems of ODEs, is almost always unknown. The selection of

the most appropriate solver, according to speed and correctness, is not a straightforward task

and cannot be based on, for instance, literature. Moreover, with the advent of distributed

computing, large amounts of data on previously run simulations are readily available. Analyzing

these data can help automating the selection of the most appropriate solver. A new methodology

for this automatic selection, based on the correctness of the solution from a repository of

simulations, was developed and tested on a set of 16 models with different levels of complexity.

This methodology is capable of finding deviating solutions when the model is computed with

different solvers and settings, and shows that numerical solver uncertainty is quite common. A

cluster of appropriate solvers, which are able to solve the model correctly, can be identified and

the most efficient solver can be selected among them. This results in a reduction of the

numerical solver uncertainty. On top of that, it was also possible to achieve a reduction of the

computation time by a factor of 106, compared to slow, but undoubtedly correct solvers.
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INTRODUCTION

Numerical solver uncertainty is a source of uncertainty that

considers all aspects of uncertainty related to the numerical

solver that is used to integrate the differential equations

of a model (Claeys et al. 2008). A numerical solver is

implemented in a programming language, and has a range

of simulation problems to which it is applicable. It is a well

known fact that a given numerical solver, although suitable

for a certain type of differential Equation (PDE, ODE, DAE,

etc.), cannot correctly simulate every possible model

constructed with that type of differential Equation (Seppelt

& Richter 2005). When the chosen solver and its settings are

appropriate, they will not influence the behavior of the

solution significantly, but when they are incorrect the

influence becomes stronger, and so does the total uncer-

tainty of the simulation. Sometimes solvers fail and generate

an error, and computation stops without the generation of

solution trajectories. Choosing the appropriate numerical

solver for a certain initialized model is not a straightforward

task (Claeys 2008b). In order to make this choice, a model

user must combine the knowledge he/she has of the

conceptual model, and its initial conditions, with the

mathematical and practical knowledge of certain numerical

solvers and their settings. Unfortunately, most model users

do not have the opportunity to gain experience as a
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modeller/mathematician. Most of the time they rely on the

default choices, provided with the modelling software,

which can give rise to wrong results or unnecessarily long

computation times.

Software tools that help in the selection of the most

appropriate solver can further enhance the performance of

simulations, and diminish numerical solver uncertainty.

Some stand-alone systems that give advice on the intelligent

configuration of a solver have already been developed:

ODEXPERT (Kamel et al. 1993), EPODE (Kamel et al.

1993), PYTHIA (Weerawarana et al. 1996) and PYTHIA-II

(Houstis et al. 2000).

ODEXPERT uses textual parsing to determine some

properties of the ODEs such as the number of additions,

subtractions, multiplications, divisions, exponentiations

and function evaluations. It also determines the linearity

of the system, but when no external symbolic manipulation

module is available, misclassification is possible. Stiffness

tests can also take place but again require an external

symbolic manipulation module. The system recommends

a solver, based on a rule-based knowledge base that

uses the characteristics of the equations to determine a

suitable solver.

EPODE automatically detects the characteristics of the

problems, using symbolic manipulations, and uses these

characteristics to select the most appropriate solver (Petcu

& Dragan 2000).

PYTHIA assists in the choice of partial differential

equation solvers for boundary value problems. It uses

information on the characteristics of the equations, and

uses this knowledge together with previously seen pro-

blems, to make a decision on which solution algorithm to

use. Determining the characteristics of the equations is a

difficult problem and PYTHIA requests this detailed

information from the user.

PYTHIA-II uses a database with previous cases to select

a partial differential equation solver, using objectives that

take speed (performance) and errors for each of the given

solvers using various grid sizes into account. The rules that

are extracted to select solvers are based on the character-

istics of the equations and the objectives.

Another system was proposed by (Bunus 2007). It

generates a domain-specific solver configuration model

through the use of decision trees, after detecting the nature

of the equations and performing symbolic manipulations on

them. The domain-specific solver configuration model

contains the appropriate numerical solver to compute the

model, together with the model that is transformed into a

form required by that solver.

Numerical analysis literature on this subject exists only

for particular (smaller) models. Stiffness tests exist, as

described in the work of (Ascher & Petzold 1998) and

(Cameron & Hangos 2001), but these are based on the

Jacobian matrix, which depends on the state of the model

for non-linear systems of ODEs.

Most of these methods need symbolic manipulations to

detect the characteristics of the equations and use expert

knowledge, based on these characteristics, to deduce the

most appropriate solver. PHYTIA also uses a database of

previous cases to help in the selection of an appropriate

solver. In all these systems the correctness of the results is

not evaluated automatically. Moreover, a system that helps

users with the choice of the solver for complete environ-

mental models, also taking correctness of the solution

trajectories into account, is not yet available.

The aim of the reported research is to develop a

methodology that helps to find the most appropriate solver

for an initialized model, based on the correctness of the

solution trajectory and on the speed of the computation. It

is a striking fact that the correct solution of environmental

models is almost always unknown. The initialized model is

defined as a computerized environmental model, together

with its dynamic input data, its initial values, its parameter

values, and its simulated period (or time interval) (Claeys

2008b). With the advent of distributed computing, large

amounts of data on previously run simulations is readily

available, and one can therefore rely on historical data to

achieve the above aim, by interpreting the plethora of

historical data. In this manner, symbolic manipulations and

additional complex computations are avoided, since these

are impractical on large systems of ODEs.

PREVIOUS WORK

To realize the use of historical data, an efficient mechanism

was needed to archive all important information on pre-

viously completed simulations. The modelling framework
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used in this work is Tornadoq (Claeys 2008a), and a

command line software module that makes all required

information persistent was developed for this framework.

Information on the model under consideration, the input

values, the parameter values, the initial values, the time

interval, the success or failure of a simulation, the

computation time, and the resulting trajectories is saved

into a MySQL database (Claeys 2008b). In this manner,

elapsed simulations can be quickly queried from the

MySQL database. In the remainder of this work, we use

the broader term ‘repository’ to indicate the MySQL

database, that is filled with previously run simulations.

Note that a tool to make simulations persistent can be

developed for any modelling framework.

The computation time is quantified by the number

of state evaluations of the model (Claeys 2008b). This

quantity stands for the number of times the state of the

model is computed and is referred to as ‘NrOfCS’ in this

contribution.

KEY IDEAS

In order to use pre-run simulations to guide in the selection

of the most appropriate solver, a broad range of solvers

must be available. Unfortunately, it is impossible to acquire

experiments, solved with every possible integration solver

that exists, so one must use ‘a sampling frame’ of solvers.

Tornadoq offers a wide range of dynamically loadable

integration solvers, and it was therefore decided to let the

sampling frame select among these integration solvers

(Claeys 2008a). Again, any other modelling framework

that supports many numerical solvers can be used. A

collection of simulations of a certain initialized model,

computed using these integration solvers, is considered to

be a good representation of the possible outcomes a model

can have depending on the choice of the solver.

The correct solution trajectory of the models that we use

is almost always unknown and one can therefore not decide

whether a solver has worked properly. In this work a

methodology to automatically find a possibly correct

solution trajectory was developed. It is assumed that the

correct solution will recurrently show up in the collection of

samples, obtained with different numerical solver settings.

In other words, it is assumed that correct trajectories are the

rule while erroneous ones are the exception. Furthermore it

is believed that erroneous trajectories will not resemble

each other while correct ones will almost be identical.

However, one must remain perceptive because exceptions

can be expected. For these exceptions, verification using

experimental data is a possible approach, and future

research can be necessary to solve the issues that result.

In order to find the correct solution trajectory it was

decided not to rely on experimental data because they

typically are not available. Instead, an unsupervised agglom-

erative classification technique is used, using the fast Fourier

coefficients of the solution trajectories. A clustering algor-

ithm, namely UPGMA (Dawyndt et al. 2006), is used to group

all samples hierarchically, according to a metric based on

their power spectra. Solution trajectories that closely

resemble each other are collected into a same cluster at an

early stage of the clustering procedure, while solutions that

are significantly different, according to shape and behavior,

will remain in separate clusters during several stages of

the clustering procedure. Distances between clusters are

recorded and are analyzed in order to identify the cluster that

contains numerous solutions that are nearest to each other.

FAST FOURIER TRANSFORM

When h(n) is a discrete signal that contains N samples:

[h(0), … ,h(N 2 1)], its fast Fourier transform is given by:

HðkÞ ¼
XN21

n¼0

hðnÞeð2pkn=NÞi for k ¼ 0; … ;N 2 1 ð1Þ

The power spectral density of a continuous signal

describes how the power of a signal is distributed with

frequency. The estimator of the power spectral density

of a random signal from a sequence of discrete time

samples h(t) is called a periodogram. Spectral leakage is a

phenomenon that appears as if some energy has ‘leaked’ out

of the original signal spectrum into other frequencies. This

happens because the frequencies are discrete values. To

diminish spectral leakage data windowing is applied. It

multiplies the original data [h(0), … ,h(N 2 1)] in the time
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domain by a specific window function w(n). The resulting

Fourier transform is given by (Press et al. 1992):

DðkÞ ¼
XN21

n¼0

hðnÞwðnÞeð2pkn=NÞi for k ¼ 0; … ;N 2 1 ð2Þ

A window function should be left-right symmetric: it

should rise from zero to a peak, and then fall again. For our

computations the Bartlett window was used, given by (Press

et al. 1992):

wðnÞ ¼ 1 2
n2 1

2N
1
2N

�����
����� ð3Þ

The estimator for the power spectrum that was used, is

given by (Press et al. 1992):

PðkÞ¼
1

Wss
jDðkÞj2 for k[ 0;

N

2

� �

PðkÞ¼
1

Wss

h
jDðkÞj2þjDðN2kÞj2

i
for k¼1;… ;

N

2
21

ð4Þ

where Wss is given by:

Wss¼N
XN21

n¼0

wðnÞ2 ð5Þ

SIMILARITY IN FUZZY SET THEORY

Similarity and dissimilarity are inverse relations. The first

indicates the degree to which two objects are similar, while

the latter indicates the degree to which two objects are

different. When the similarity between two objects

increases, the dissimilarity between these objects decreases.

Similarity has been studied in different disciplines, such as

taxonomy, psychology and statistics. For the problem under

study the feature-based approach used in taxonomy appears

very interesting, because a collection of P(k) can be seen as

a set of distinct objects, and the values of the P(k) can be

viewed as the presence or absence of a fictitious attribute.

Unfortunately, this approach is inappropriate, since in

classical set theory information on the presence of attributes

is always represented using {0,1}-vectors. As an alternative,

fuzzy set theory permits the gradual assessment of the

membership of elements in a set. This membership is

expressed through a membership function, that takes values

in the real unit interval [0, 1].

Fuzzy sets and fuzzy relations

A fuzzy set Aon a finite universe U ¼ {u1;u2; … ;un} is a

function from Uto [0,1], which specifies the degree A(ui) to

which each ui belongs to A. Membership functions should

not be confused with probability distributions: they do not

represent the likelihood of an event, but a degree of truth

that is situated between 0 (false) and 1 (true).

A binary fuzzy relation R on a finite universe U ¼ {u1;

u2; … ;un} is a fuzzy set on the Cartesian product U £ U.

Rðui;ujÞ indicates the degree to which ui is related to uj. This

fuzzy relation can also be represented as a matrix AR, with

elements aij ¼ Rðui;ujÞ for any i; j ¼ 1; … ;n.

Similarity measures in set theory

A large family of similarity measures exists for ordinary

subsets A and B of a finite universe U ¼ {u1;u2; … ;un}

(De Baets et al. 2002):

SðA;BÞ ¼
xDA;B þ y dA;B þ z yA;B

x0 DA;B þ y dA;B þ z yA;B

withA; B in the power setPðXÞ ¼ {0;1}X;

whereDA;B ¼ jADBj

dA;B ¼ jA> BjyA;B ¼ jðA< BÞcj

and x; x0; y; z are positive reals such that 0 # x # x0 ;

and jAjdenotes the cardinality of a setA

ð6Þ

Similarity measures for fuzzy sets

Fuzzification schemes exist to translate the family of

similarity measures for crisp sets into their fuzzy counter-

part (De Baets & De Meyer 2005). These schemes rely on

the fuzzification of the cardinality of an ordinary set, and

on the fuzzification of the basic classical set operations,

such as intersection, union and (symmetric) difference. The

family of similarity measures for crisp sets can be translated

into a family of similarity measures between two fuzzy sets
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A and B in a finite universe U ¼ {u1;u2; … ;un}:

SðA;BÞ ¼
xðaþ b2 2uÞ þ yuþ zðn2 a2 bþ uÞ

x0ðaþ b2 2uÞ þ yuþ zðn2 a2 bþ uÞ
;

where a ¼
Xn
i¼1

AðuiÞ

b ¼
Xn
i¼1

BðuiÞ

u ¼
Xn
i¼1

QðAðuiÞ;BðuiÞÞ

and Q denotes a commutative quasi 2 copula:

ð7Þ

A quasi-copulas is a function Q: ½0;1�2 7! ½0;1� which

satisfies (Genest et al. 1999):

1. Neutral element 1 and absorbing element 0.

2. Monotonicity: Q is increasing in each variable:

Qðx1; y1Þ # Qðx2; y2Þ if x1 # x2 and y1 # y2

3. 1-Lipschitz property: for any ðx1; x2; y1; y2Þ [ ½0;1�4 it

holds that: jQðx1; y1Þ2Qðx2; y2Þj # jx1 2 x2j þ jy1 2 y2j

Quasi-copulas are used to generalize classical set

intersection to fuzzy sets. The mapping dðA;BÞ ¼ 1 2 SðA;BÞ

is a pseudo-metric when x0 $ max ðy; zÞ. In this paper, we

have restricted our attention to the subfamily of similarity

measures that results when x0 ¼ y ¼ 1 and x ¼ z ¼ 0, or

when x0 ¼ y ¼ z ¼ 1 and x ¼ 0, which all yield pseudo-

metrics. These similarity measures can be seen as general-

izations of the well known Jaccard similarity coefficient,

and the simple matching coefficient, respectively.

METHODOLOGY

In general, when the step size is sufficiently small, solvers

are able to compute the correct solution trajectory.

Especially for stiff problems, when the step size becomes

too big, the numerical solution becomes unstable. Unstable

solutions diverge from the real solution trajectory of the

system of differential equations under consideration. Stab-

ility regions define a threshold on the step size that still

produces a stable solution.

Explicit (Euler, AB2, AB3, AB4) and Runge Kutta

methods (RK2b, Midpoint, RK2a, RK4, RK4ASC) in

combination with a moderate step size or accuracy, are

very slow, and are in the remainder of this work denoted as

‘reference solvers’. The stability regions of the reference

solvers considered in this work are not identical, but

overlap. Reference solvers and other solvers that fail for a

certain model are not considered anymore for that model.

Comparison of solution trajectories is done on the basis

of their power spectra. The fast Fourier method and the

periodogram method were used. According to the rec-

ommendations of Press et al. (1992) the choice of the

window function is the Bartlett window.

It is assumed that in the repository a range of solution

trajectories for a certain (environmental) model reside,

computed using different solvers and settings. The vector of

all frequencies of the power spectrum, for the different

simulations (L) and the different model outputs (P) are the

elements of a matrix as shown in Figure 1. The number of

outputs considered is set by the user.

The methodology for automatic solver selection consists

of 4 steps:

1. Frequency selection.

2. Normalization of the values.

3. Similarity and distance computation.

4. Clustering.

Frequency selection

The process of comparing solution trajectories on the basis

of all available frequencies can be very time-consuming.

Figure 1 | The elements (Freqlp) of this matrix are vectors that contain all frequencies

of the power spectrum, per simulation (l) and per model output (p). The

result after frequency selection is one vector of frequencies per output for

all simulations (Fp).
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Moreover, in general the higher the frequencies, the more

the values of the power tend to zero. Including all these

small values would unrealistically dominate the compari-

son. For this reason it was decided to compare the

trajectories on the basis of parts (not all frequencies) of

their power spectra. Hence, the first step of this method-

ology is the selection of these frequencies.

Frequencies (Freqlp) are selected per output variable (p)

for all simulations. For a certain output (p) and a certain

simulation (l) all frequencies with a power value (Vallp(x))

above 0.1% of the maximum power value of that simulation

(m) are kept. These frequencies are selected in this way for

all simulations (L) and are gathered per output, by taking

the union over all simulations, but not over all outputs. This

yields for each output a vector of frequencies gathered from

all simulations (l) with that output (Fp).

At the end, for every simulation, the power values that

correspond to the frequencies of every Fp are taken for each

output, and the vectors Vlp are produced.

The selection of frequencies can vary depending on the

specific objectives of the analysis. One can perform a selection

based on the values of the frequencies in combination with

their power values. For instance, low-amplitude instabilities

in the outputs can be caused by environmental conditions

that are temporally near zero. When these instabilities must

be computed correctly, certain frequencies with low power

values become important. In this case, one could augment

the previously described selection with the selection of high

frequencies that still have power values above and below a

minimum and maximum threshold.

Normalization of the values

During the second step, the power values of Vlp are

normalized, so that they become elements of the interval

[0,1]. We have chosen to perform a pairwise normalization.

For all possible pairs, and every time a new pair of

simulations (Vlp and Vl0p) is formed, normalization is

performed.

The normalization is relative to the largest power value

of a pair of values, thus when Vlp½i� . Vl0p½i� the normal-

ized values become vlp½i� ¼ 1 and vl0p ¼ Vl0p½i�=Vlp½i�,

otherwise they become vlp ¼ Vlp½i�=Vl0p½i� and vl0p ¼ 1.

Because of this relativeness very small values will be

regarded as being completely dissimilar. To avoid this, the

similarity between two power values both below 1023 is

artificially set to 1, thus they are regarded as equal. The final

result is that each pair of vectors of power values ðVlp;Vl0pÞ

becomes a pair of fuzzy sets ðnlp; nl0pÞ, since all elements of

ðnlp; nl0pÞ have values between 0 and 1.

Similarity and distance computation

The similarity (S) between the fuzzy sets is computed using

the family of similarity measures defined in Equation (7),

with x0 ¼ y ¼ 1 and x ¼ z ¼ 0, or with x0 ¼ y ¼ z ¼ 1 and

x ¼ 0. Since 1 is the neutral element of any commutative

quasi-copula, and because the normalization always sets

one value equal to one, any commutative quasi-copula

results in the same expression:

Sðnlp; nl0pÞ ¼

PN
i¼1 min ðnlpðiÞ; nl0pðiÞÞ

N
ð8Þ

The shorthand Sp
ll0 stands for Sðnlp; nl0pÞ, and after

complementataion the final result is a distance matrix as

shown in Figure 2. In order to come to a distance matrix for

all outputs, the above distance matrix needs to be

aggregated. To this end the largest dissimilarity of all

outputs per pair of simulations is taken: dll0 ¼

max ðd1
ll0 ; … ;dP

ll0 Þ (see Figure 3). Taking the maximum

preserves the properties of a metric.

Clustering

Using the final distance matrix an UPGMA clustering with

average linkage is performed. Figure 5 shows an example of

Figure 2 | The distance matrix for one Outputp: the smaller dp
ll0 ¼ 1 2 Spll0 , the more

similar the solution trajectories of the outputs are.
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a dendrogram for the Circle model, computed with a range

of 30 different solvers and settings, and with moderate

accuracies (step size: 1025 or accuracies of 1025). More

details on this example are given below.

EXPERIMENTS

We have tested this new methodology on 16 models:

Foubert (Foubert et al. 2006), Hindmarsh (Zhabotinsky

2007), Influenza (Cellier 1991), Krogh (Shampine & Gordon

1975), PredatorPrey (Seppelt & Richter 2005), VanDerPol

(van der Pol 1920), Circle, Damper, and on environmental

models: Lambro (Benedetti & Sforzi 1999), Benchmark

(Copp 2002), BioReactor (Dochain & Vanrolleghem 2001),

Oxygen Uptake Rate (OUR), LLAS PS (Benedetti 2007),

ASU, TwoASU, Galindo (Ayesa et al. 2006). A description

of these models is beyond the scope of this article, and is

presented in the work of Claeys (2008b). Environmental

models are large systems that can have more than 500

derived variables and over 5000 (partly coupled)

parameters.

The repository is filled with simulations that were

computed with 30 different solvers and settings Adams-

Bashforth 2 (Hairer et al. 1993), Adams-Bashforth 3 (Hairer

et al. 1993), Adams-Bashforth 4 (Hairer et al. 1993),

Rosenbrock (Shampine 1982), RK2a (Abramowitz & Stegun

1965), Midpoint (Kloeden & Platen 2000), Euler (Flowers

2000), Milne (Abramowitz & Stegun 1965), RK2b (Butcher

2003), Runge Kutta 4 (Kloeden & Platen 2000), Runge-

Kutta-Fehlberg (Press et al. 1992), 10 variations of CVODE

(Hindmarsh et al. 2005) (see Table 1), 6 variations of

LSODE (Hindmarsh 1983) (see Table 1), DASSL (Petzold

1982), DASRT (Brenan et al. 1989), LSODA (Petzold 1983)),

and with a moderate accuracy (10 2 5). The accuracy is set

at 10 2 5 so that the overall simulation time remains

acceptable, for the entire range of simulations. A description

on the use of these solvers is beyond the scope of this article,

and can be found in the Table 1 and 2.

Easy retrieval of the information needed to apply the

methodology was possible because, after the simulation

ended, each experiment was automatically saved in the

repository.

Figure 3 | The final distance matrix used to compare simulation trajectories.

Table 1 | List of abbreviations for solvers, used in the dendrograms. Short descriptions

on the usage and meaning of these terms is given by Claeys (2008b)

Abbreviation Full Name

Rosen Rosenbrock

Midpo Midpoint

Modif Modified Euler

CVODE/A/F CVODE/Adams/Functional

CVODE/A/N/D CVODE/Adams/Newton/Dense

CVODE/B/F CVODE/BDF/Functional

CVODE/B/N/D CVODE/BDF/Newton/Dense

CVODE/A/N/B CVODE/Adams/Newton/Band

CVODE/B/N/B CVODE/BDF/Newton/Band

CVODE/B/N/S/M CVODE/BDF/Newton/SPGMR/
ModifiedGS

CVODE/B/N/S/C CVODE/BDF/Newton/SPGMR/
ClassicalGS

CVODE/A/N/S/M CVODE/Adams/Newton/SPGMR/
ModifiedGS

CVODE/A/N/S/C CVODE/Adams/Newton/SPGMR/
ClassicalGS

LSODE/A/F LSODE/Adams/Functional

LSODE/B/F LSODE/BDF/Functional

LSODE/A/N LSODE/Adams/Newton/Dense

LSODE/B/N LSODE/BDF/Newton/Dense

LSODE/A/D LSODE/Adams/Newton/Diag

LSODE/B/D LSODE/BDF/Newton/Diag
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RESULTS

A special case: the circle model

Let us consider the Circle model, which is a special model

with a simple analytical solution. Circle describes an

undamped spring-mass system or a harmonic oscillator:

F ¼ ma ¼ m
dx2

dt
¼ 2kx ð9Þ

The system of differential equations of the model, with

m and k ¼ 1, is given by:

dx

dt
¼ y and

dy

dt
¼ 2x ð10Þ

The analytical solution of the model is illustrated in

Figure 4, for x(0) ¼ 0 and y(0) ¼ 0, and is given by:

xðtÞ ¼ cosðtÞ ð11Þ

The final result of the methodology is a dendrogram,

which represents the clustering information of the trajec-

tories computed by the 30 solvers and their settings. As an

illustration, the dendrogram for the Circle model is shown

in Figure 5. From this figure it can be quickly concluded

that, because the dissimilarity between the reference solvers

is low (#0.005), we can assume that these solvers have

computed the same solution trajectories. In the remainder

of this work, for each experiment, the cluster that contains

all reference solvers that did not fail, is denoted as the

reference cluster.

On the other hand, in Figure 5, the solvers CVODE/A/

N/B and CVODE/B/N/B have a dissimilarity of 1, as

compared to the rest of the solvers, and therefore it is

concluded that they produce solution trajectories that

deviate from all the other trajectories. Solvers that produce

these diverging solutions are denoted as ‘anomalous solvers’

in the remainder of this article.

The anomalous solvers of this model detected by the

methodology are shown in Figure 6. These are indeed

strange combinations of solver settings, and detection of the

anomalous solvers by inspection is easy, but this is not

always the case for other models. What is important is that

they were detected automatically, without having to look at

all solution trajectories.

In order to arrive at a general interpretation of the

dendrograms for all experiments, it was decided to use two

threshold values. The first threshold helps to identify the

anomalous solvers. This threshold was set to a dissimilarity

of 0.2, which means that all solvers that group with the

cluster that contains the reference solvers, at a distance

above 0.2, are categorized as anomalous solvers (see

Figure 5). A second threshold was used to help select the

most appropriate solver, and was set to a rather small

value of 0.05. All solvers that group with the cluster that

contains the reference solvers below a distance of 0.05

Table 2 | List of abbrviations for numerical methods, used in the dendrograms. Short

descriptions on the usage and meaning of these terms is given by Claeys

(2008b)

Abbreviation Full Name

BDF Backward Differentiation Formulas (integration)

Adams Adams-Moulton (integration)

Functional Functional iteration

Newton Newton iteration

Dense Full Jacobian matrix

Band Diagonal treatment of Jacobian matrix

Diag Diagonal treatment of Jacobian matrix

SPGMR Preconditioned GMRES (a Krylov method)

GMRES Generalized Minimal RESidual method

ClassicalGS Classical Gram-Schmidt procedure

ModifiedGS Modified Gram-Schmidt procedure Figure 4 | The correct analytical solution of Circle compared to the solution of the

LSODE/A/N solver, where x is defined as in Equation (10).
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are labelled as ‘appropriate’ for solving the model under

consideration (see Figure 5). Within this group the fastest

solver, i.e. the one with the lowest NrOfCS, is taken as

the most suitable one. It is the most efficient solver that

is able to compute the correct solution, and is denoted as

the ‘selected’ solver in the remainder of this article.

In this manner LSODE/A/N was detected as the fastest

solver for the Circle model, and we found indeed that is was

appropriate for solving the model. The solution trajectory of

LSODE/A/N, compared to the analytical solution is shown

in Figure 4.

Results for the other models

At this stage of the study the interpretation of the

dendrograms was done by hand and was not automated

yet. However, complete automation of the methodology is

possible and fine-tuning can be performed at that stage.

For the remaining models, analytical solutions were

not available, but the correctness of the trajectories of

the selected solver was confirmed by domain experts,

while the anomalous trajectories were also confirmed.

The detailed results of these confirmations are beyond

the scope of this article and is available on request or in

the work of (Claeys 2008b).

Next to the identification of the anomalous solvers, and

failures, we also selected the most appropriate solver for

each model. Figure 7 gives an overview of the ‘fastest’,

Figure 5 | Dendrogram of the Circle model, computed with a range of 30 different solvers. The unabbreviated terms of the solvers are shown in Tables 1 and 2. In this case Milne

and LSODA fall into reference cluster, but these are not reference solvers.

Figure 6 | The anomalous solvers of Circle compared to the solution of the Euler

solver, which is an oscillation between 21 and þ1 (see Figure 4). The

numbers indicate the simulation time in NrOfCS (the higher the slower).
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the ‘slowest’, the ‘selected’ and the ‘strictest’ solver.

The ‘strictest’ solver is the first solver that joins the cluster

of reference solvers. This means that the solution of the

strictest solver lies the closest to the references, much closer

than the solution of the selected solver. However, mostly

the strictest solver is much slower than the selected solver.

As an overview, Figure 8 illustrates the selected, the

anomalous and failed solvers for each experiment.

DISCUSSION

From Figure 8 it is not possible to detect very strong trends

in solver suitability. None of the solver’s rows are

completely or mainly black, which means that no perfect

solver exists. Milne, CVODE/B/N/S/C, CVODE/B/N/S/M,

CVODE/A/N/S/M, LSODE/B/D, CVODE/B/N/D, CVO

DE/A/N/B, LSODE/B/D, DASRT, and DASSL appear not

to be good candidates since they failed and were anomalous

in more than 25% of the test cases. Moreover, they were

never selected.

A remark concerning the anomalous solvers is that

many represent solvers with unusual combinations, such

as Adams-Moulton with variations on a Newton iteration.

Moreover, a BDF method combined with a banded or a

preconditioned Newton iteration also appears frequently

among the anomalous solvers. Nevertheless also solvers

that have recommended combinations such as Adams-

Moulton together with Functional iteration, or BDF

with Newton iteration, are also part of the anomalous

solvers. Even more remarkable is that all of these

combinations have representatives among the selected

solvers (see Figure 7). Thus a general rule that favors logical

combinations of integration and iteration methods over

unusual ones is not useful.

Figure 7 | The most appropriate solver (‘selected’) for the different test cases. The ‘slowest’, ‘fastest’, and ‘strictest’ solver are also shown. The NrOfCS is a measure for the

computation time, the higher the slower. When the reference solvers do not cluster in an early stage of the clustering process, the strictest solver cannot be defined (–).
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Figure 8 shows that, among the non-reference solvers,

only CVODE/A/F, CVODE/B/F, LSODE/A/F and

LSODA never appear as anomalies, while they do become

the selected or strictest solver. CVODE/A/F is fast, but it is

selected only once, while CVODE/B/F is never selected

and appears as the strictest solver only once. LSODA

appears frequently as the strictest solver, but never as the

selected solver, because it is too slow. LSODE/A/F appears

as the strictest solver 3 times, but is never selected. From

this we cannot conclude that these solvers are in general the

best choices, and are perfect candidates for solving all test

cases. Choosing a solver, like LSODA, that produces the

most correct result most of the time, without taking into

account its speed is not a good approach. Moreover, the

number of models in the intersection between the fastest

and the anomalies often is not zero, thus choosing the

fastest solvers without taking into account the correctness

of the solution is not a good approach either. The solution

lies somewhere in the middle between very fast solvers and

correct, but slow ones.

Another conclusion is that LSODE/A/N, LSODE/A/D,

CVODE/A/N/D, and Rosenbrock are good choices, but we

must not neglect that these solvers also appear frequently

among the anomalous solvers. This clearly indicates that we

are exploring the edge between fast solvers that still give

satisfactory results, and fast solvers that are deficient. It is

also noteworthy that frequently anomalous solvers are

slower than the selected solver. Surprisingly, unusual

combinations of solver settings can produce very good

and fast simulation results.

Solvers like CVODE/A/N/B, CVODE/A/N/S/M,

CVODE/B/N/S/M, CVODE/B/N/S/C, CVODE/B/F,

CVODE/B/N/D, LSODE/B/D, LSODE/A/F, DASSL,

DASRT and even LSODA are never selected. We should

not discourage the use of these solvers, because we should

keep in mind that when more test cases are used these

Figure 8 | An overview of the results. Red indicates failure: the solver fails without the generation of solution trajectories. Brown indicates an anomaly: an erroneous solution is

generated. Green indicates the selected solver: the most appropriate solver.
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solvers could become selected in the future. Although most

of these solvers fail a lot too, they are found to produce

correct results in some cases, but they are never selected as

the fastest one.

We should also mention that Milne is a solver that

failed frequently, and when it was successful it was very

slow or was anomalous. Therefore, based on these exper-

iments, we can undoubtedly discourage the use of Milne.

Milne might be anomalous because of implementation

errors, thus because of high numerical coding uncertainty.

These findings show that deducing general rules on the

use of solvers, based only on the characteristics of the

solvers themselves is not possible. The most appropriate

solver also depends on the model (experiment) under

consideration. Therefore it is confirmed that the proposed

methodology is important for practice.

Although we cannot derive general rules on the basis of

solvers only, it is more than clear that RK4 is the most

sluggish solver among all solvers tested. Choosing RK4,

together with a moderate step size, will probably give a

correct solution, but one must be very patient. Therefore we

can certainly advise modellers not to use this rather popular

solver in future research projects.

The trends based on the test cases are more significant,

computations for Hindmarsh, Influenza, OUR, LLASP PS,

PredatorPrey and VanDerPol fail or are incorrect for more

than 20% of the solvers. For two of these models, the slow

solver Rosenbrock is selected, and the solver LSODE/A/D

is always anomalous. On the contrary, for the other test

cases (ASU, Circle, Foubert, GalindoOL, TwoASU, Dam-

per, Benchmark, BioReactor, Krogh, Lambro) LSO-

DE/A/D is a good choice, since it appears as the selected

solver four times, and is not anomalous for any of these

experiments.

ASU, TwoASU, Benchmark and GalindoOL are bio-

process models composed of the same building blocks, thus

they have several similar properties. It is noteworthy that

their anomalies are rather similar, and that LSODE/A/D

appears as the selected solver for three of these models,

while it is a good choice for ASU.

Similarities between experimental specifications that

influence the outputs of the model can also play an

important role in the selection of the most appropriate

solver. Dynamic input data is such an experimental

specification and in the future similarities between these

data could be computed using the family of similarity

measures proposed in this work (Equation (8)).

The time it took to apply this methodology per test case

was an average of 10 seconds. Thus, when this methodology

is implemented in an efficient manner, it can be run every

night using the cases available in the repository. Test cases

with different accuracies could become available and

predictions on the choice of the best solver for each test

case are then refreshed daily. This updating process is very

useful, because the results depend on the test cases that

reside in the repository, that is continuously extended.

Finally, Figure 7 shows that choosing the most appro-

priate solver can indeed speed up computation time with a

factor that ranges from 10 up to 106. This factor of

improvement can serve as an encouragement to support

further research into this topic.

NUMERICAL UNCERTAINTY SCORE

The dendrograms, presented above, could help identifying

the degree of numerical solver uncertainty that character-

izes an experiment. The lower the distances at which

clusters are formed, the lower the numerical solver

uncertainty. The higher these distances are, the higher the

numerical solver uncertainty. It can therefore be stated that

automatic solver selection can reduce numerical solver

uncertainty in future simulations.

A simple method to assess the numerical uncertainty

related to a mathematical method, that an experiment

exhibits, is to compute 1 minus the fraction of solvers

that correctly computed the model for a certain accuracy.

Table 3 lists the numerical uncertainty score for the test

cases in ascending order. The lower the score, the lower the

numerical uncertainty the experiment is exposed to.

If the accuracy is satisfactory, then the (%) of numerical

solvers that fail to compute the correct solution can be an

indication of the numerical uncertainty related to coding

errors in the numerical solvers, or in the model. Again,

when the accuracy is satisfactory, the number of anomalous

solvers (see 2nd column of Table 3) is an indication of how

sensitive the initialized model is to the suitability of the

mathematical methods of the numerical solvers. The lower
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the number of anomalous solvers, the lower this sensitivity,

and the lower the numerical uncertainty related to the

suitability of the solver for that model.

CONCLUSIONS AND FUTURE WORK

In this study it has been observed that several initialized

models have largely dissimilar solution trajectories, when

computed with different solvers and settings. Hence,

numerical solver uncertainty is not a rare phenomenon.

Moreover, proper solver selection can shorten simulation

time with a factor up to 106, and it is not a straightforward

task for the unexperienced modeller to find this selection. It

can therefore be concluded that automatic solver selection

can reduce numerical solver uncertainty in future simu-

lations, and in this work it was shown that repositories,

containing numerous simulations, are suitable for the

process of automatic solver selection.

The methodology proposed in this article is capable of

detecting deviations from the reference solutions, and could

be run during idling time of servers. In this way the solver

selection process would be updated daily, according to the

available test cases.

It is known since long that the fastest solvers are not

always the best candidates, since they can produce wrong

results. Taking only correctness into account while evaluat-

ing solvers, by selecting the strictest solver as the most

appropriate one, is not a good approach either, since mostly

this solver is very slow. The most appropriate solver can be

found in between solvers that exhibit fast computations and

solvers that produce correct results.

Deriving general rules solely on the basis of the solver

properties is not possible, as it was shown that none of the

solvers is perfect for solving all models. One cannot

discourage the use of certain solvers. Similarities between

models seem however to be important in the selection

of the most appropriate solver. In the future it may

therefore be possible to extract general rules based on the

properties of models and experimental specifications in

combination with the properties of solvers. Certainly,

the following holds: the more test cases are available,

the more we are able to derive general rules, based on

solvers and models.
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