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Abstract

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) is the new European chemical legislation which aims
to assess risk or safety of tens of thousands of chemicals to improve the protection of human health and the environment. The chemical
safety assessment process is of an iterative nature. First, an initial, worst-case assessment is conducted after which refinements are made
until no risk has been estimated or the risk is adequately controlled. Wasting time and resources on additional testing and implementing
risk management measures with low effect on risk conclusions should be avoided as much as possible. This paper demonstrates the use-
fulness of an intelligent data collection strategy based on a sensitivity (and uncertainty) analysis on the risk assessment model EUSES to
identify and order the most important “within-EU-TGD-reducible”” input parameters influencing the local and regional risk character-
isation ratios. The ordering can be adjusted for the costs involved in additional testing (e.g. ecotoxicity, physico-chemical properties,
emission estimates, etc.). The risk refinement tool therefore reduces the resources needed to obtain a realistic risk estimate (both less con-

servative and less uncertain) as efficient as possible.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The European risk assessment principles for new and
existing chemicals are laid down in Commission Directive
93/67/EEC and 1488/94 (EC, 2003), respectively. Increas-
ing concern that these EC regulations do not provide suffi-
cient protection and that less than hundred high priority
substances underwent a risk assessment in the past 10 years
led to a review of the current policy on chemicals. A new
system called REACH (Registration, Evaluation, Authori-
sation and Restriction of Chemicals) has recently been
adopted (EC, 2006). The aim of REACH is to improve
the protection of human beings (comprising of workers,
consumers, and humans indirectly exposed via the environ-
ment) as well as ecosystems in the aquatic (water and sed-
iment) and terrestrial compartments (including top
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predators) from adverse effects of chemicals while main-
taining the competitiveness and enhancing the innovative
capability of the EU chemicals industry. Within the context
and scope of REACH, there is a need to be able to effi-
ciently perform risk assessments on thirty thousands chem-
icals manufactured in or imported into Europe. The
exposure and hazard assessment require many data acqui-
sitions in accordance with the EU Technical Guidance
Document (TGD; EC, 2003) or via EUSES software and
consequently can absorb considerable time and resources.

The chemical risk/safety assessment process is of an iter-
ative nature. First, an initial, worst-case assessment with
conservative input parameters and assumptions is con-
ducted. Recently, ECETOC developed a pragmatic and
adequately conservative (i.e. no false negatives) approach
that shares the same fundamental principles as the TGD
(and EUSES) but allows for a ready identification of sub-
stances of very low or no immediate concern (Verdonck
et al., 2005). If the substance does not pass this lower tier


mailto:frederik.verdonck@euras.be

F.A.M. Verdonck et al. | Chemosphere 70 (2008) 1818-1826 1819

approach or an initial risk assessment based on a tentative
exposure scenario, it is required to (1) collect further
information and/or testing or (2) to implement risk man-
agement measures (RMM). This iterative procedure con-
tinues until no risk is estimated or the risk is adequately
controlled.

Wasting time and resources on additional testing and
implementing RMMs with low effect on risk conclusions
should be avoided as much as possible in these iterative
processes. There is therefore a need for techniques that
optimises additional testing. This paper will demonstrate
the usefulness of an efficient risk refinement tool (based
on sensitivity and uncertainty analysis on the EUSES
model) to check whether further refinement is worthwhile
and if so, to identify and order the most important
within-EU-TGD-reducible input parameters and RMMs
influencing the local and regional risk characterisation
ratios. The ordering can also be adjusted to the costs
involved in additional testing or implementation of
RMMs. Focus in this paper is given on the environmental
side although the general concepts are also applicable for
human health risk assessment.

2. Methodology
2.1. Environmental chemical risklsafety assessment

An environmental chemical risk/safety assessment usu-
ally proceeds in the following sequence: hazard assessment,
exposure assessment and risk characterisation.

In the hazard assessment, reliable and relevant long-
term (chronic) ecotoxicity data for organisms belonging
to different trophic levels are gathered. For a limited effects
database, the predicted no effect concentration (PNEC) is
calculated by applying an assessment factor (AF), reflect-
ing sources of uncertainty, to the lowest ecotoxicity value
observed. For a sufficiently large effects database, a species
sensitivity distribution (SSD) can be used to derive the
PNEC value. The 5th percentile is used as the PNEC esti-
mate, after application of an AF between one and five to
cover remaining uncertainties (EC, 2003).

In the exposure assessment, a distinction is made
between different spatial scales (EC, 2003). The local scale
considers the vicinity of a point source and the local pre-
dicted environmental concentration (PEClocal) is calcu-
lated. The regional scale assesses the exposure levels due
to diffuse/widespread releases in a larger region (PECre-
gional). The PECregional acts as the background concen-
tration for the local assessment. The technical principles,
described in the EU TGD (EC, 2003), are implemented
in the computer program EUSES (EC, 1998). EUSES first
calculates releases of chemicals based on the volume pro-
duced or imported, the use pattern, and the physico-chem-
ical properties of the chemical concerned. These release
estimates are subsequently translated into PECs for each
environmental compartment (air, water, sediment, soil)
based on the transport and fate of the substance. For met-

als in sediment, a bioavailability correction can be made
for metals bound to acid volatile sulfides (AVS) (ICMM,
2007). In general, however, preference is given to mea-
sured, representative input parameters or PECs where
available. If not available, conservative, worst-case
assumptions need to be used. Jager et al. (1998) identified
several of these conservative input parameters/modules:
release estimation, biodegradation, the exposure scenario.
The estimation of partition coefficients and BCFs was
found to be realistic and the regional distribution model
may be characterised as best case.

The risk characterisation comprises of a quantitative
comparison of the PEC, for most substances under
REACH estimated through modelling, with the PNEC.
The risk characterisation ratio (RCR), or PEC/PNEC
ratio, larger or equal to one signifies that there is a poten-
tial risk of adverse effects occurring. A RCR smaller than
one signifies no need for further information and/or testing
and/or implementing RMM:s.

2.2. Sources of uncertainty

All exposure and effects related EUSES input parame-
ters are characterised by uncertainty. The sources of uncer-
tainty can be further subdivided into irreducible and
reducible uncertainty, also called respectively variability
and uncertainty (Verdonck et al., 2007). Variability repre-
sents inherent heterogeneity or diversity in a well-charac-
terised population. Examples are the temporal and spatial
variations of the chemical concentrations, inter-species sen-
sitivity, intra-species variability, differences in endpoints
(reproduction, growth, survival...). Sources of reducible
uncertainty in risk assessment are sampling uncertainty
(i.e. uncertainty related to a limited sample size), represen-
tativeness of the selected species,. . .

For some input parameters, sources of uncertainty are a
trigger for using AFs and worst-case assumptions in the
exposure and effects assessment in order to avoid false-pos-
itives (unsafe chemicals that are assessed to be safe). Sche-
matically visualised in Fig. 1, an upper percentile of the
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Fig. 1. Concepts of uncertainty and conservatism.
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uncertainty distribution of an input parameter can act as
the deterministic, worst-case estimate. For example in the
TGD, a dilution factor of 10 is assumed for a local indus-
trial or municipal plant’s effluent discharging to the receiv-
ing river. Note that in this example, a lower percentile is the
worst-case estimate. The difference between the reasonable
worst-case dilution factor of 10 and the average dilution
factor of all European discharges can be considered as a
measure of conservatism. For other input parameters, it
is not possible to determine a priori the worst-case value
(e.g. a high partition coefficient may be worst-case for
one environmental compartment but best-case for another
compartment). The spread or variance of the uncertainty
distribution can be considered as a measure of uncertainty.
For some input parameters, characterised by an uncer-
tainty distribution, no conservatism is introduced and an
average estimate is used for further consideration. For
example, an average or median is typically considered for
physico-chemical input parameters (vapour pressure, water
solubility, partition coefficients...). Those input parame-
ters are characterised by uncertainty but typically not by
conservatism. A proper distinction between conservatism
and uncertainty is needed for further sensitivity analysis.

Not all input parameters can be considered to reduce the
conservatism or uncertainty within the legislative context.
The environmental input parameters of the multimedia
model in EUSES, for example, are “fixed” in the TGDs
(e.g. the area of a region). These input parameters are
not readily allowed to be changed and therefore their
uncertainty is built-in the assessment. Those input param-
eters are usually not substance-specific. The analysis con-
ducted in this paper focuses on those input parameters
that are readily allowed to be changed, i.e. substance-spe-
cific input parameters as emissions, physico-chemistry,. ..
These input parameters will be named readily within-EU-
TGD-reducible input parameters hereafter. For a more
elaborate sensitivity analysis covering more EUSES input
parameters, the reader is referred to the literature (e.g.
Schwartz et al., 2000).

2.3. Impact of sources of uncertainty in risk

2.3.1. Procedure

An initial risk assessment (with tentative exposure sce-
nario) is based on limited data and therefore, works protec-
tive through the use of conservative (default) values for
exposure and effects input parameters. The combination
of uncertain and sometimes conservative input parameters
leads to an initial, worst-case (overestimated) and uncer-
tain risk estimate (see Fig. 2 on the left). As more informa-
tion or data become available, AFs and worst-case
assumptions/values are reduced; and the resulting risk esti-
mate becomes more realistic (usually lower because of the
conservative nature of the initial exposure and effect assess-
ment). The most realistic risk estimate can be obtained by
collecting and using as much data and information as pos-
sible (see Fig. 2 on the right).

RCR Reduce .
. conservatism Reduce uncertainty
initial
estimate
real ] ~ L
risk ks
|

# data collected
# man-hours

Increase accuracy Increase precision

Fig. 2. Data collection leads to more accurate and precise risk estimates
(RCR: risk characterisation ratio).

In the development of the risk refinement tool, it was
chosen to first reduce the conservatism (see Fig. 2 left part)
and then to reduce the uncertainty (see Fig. 2 right part).
Note that reducing conservatism automatically also leads
to reduced uncertainty. Following the constraints of the
EU TGD in adjusting input parameters of the EUSES
model, there will remain an “irreducible” built-in conserva-
tism and uncertainty due to TGD constraints (e.g. the
uncertainty in the environmental dimensions of the EUSES
model).

The risk refinement tool, developed in this paper, iden-
tifies those input parameters that are most conservative
and uncertain in relation to the conservatism and uncer-
tainty of the RCR of concern. These input parameters
are the “low hanging fruit” to obtain a realistic risk as soon
as possible. Such an input parameter ordering can be
obtained through sensitivity analysis.

2.3.2. Sensitivity analysis

Several methods are available to conduct sensitivity
analysis (Saltelli et al., 2000; Janssens et al., 1992). The
Monte Carlo based method on linear regression was found
to be the most suitable method because it is easy to use and
understand. The general idea is to approximate the often
complicated relation between an output variable Y (depen-
dent variable, the RCR of concern) and the input parame-
ters X; (independent variables) by a simple linear

regression:
Y = Z B X+ Bo
=1

with f; the regression coefficients and f, the intercept. The
observations (X7, X»,...X;, Y) are generated by a Monte
Carlo simulation on the uncertainty distributions of the in-
put parameters of EUSES. The following standardised
quantity

S =pi- "

Sy
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with sy, and sy respectively the estimated standard devia-
tion of the input parameters and the output, is a measure
for the sensitivity of the uncertainty in the output relative
to the uncertainty in the input parameters (also called
SRC or standardised regression coefficients). This sensitiv-
ity measure can, therefore, identify the input parameters
with the largest contribution to the output uncertainty.
This sensitivity measure can, however, not detect the most
conservative input parameters because the definition does
not contain any measure of conservatism as defined in
Fig. 1. For this reason, the following standardised quantity
was developed:

> |Xi,wc_Xi|
S,- = ﬁ,- ﬁ

with X; . and Y, respectively the “worst case’ estimates
of the input parameters and the resulting output, and X;
and Y respectively the mean estimates of the input param-
eters and the output. This new quantity is consequently a
measure for the sensitivity of the conservatism of the out-
put relative to the conservatism of the input parameters
(called here wcRC or worst case regression coefficients).

The sensitivity measures for uncertainty and conserva-
tism will not result in a different ordering in case the uncer-
tainty and conservatism of an input parameter are
dependent (i.e. when the uncertainty is estimated based
on the conservatism or vice versa e€.g. more conservatism
results in more uncertainty). In case conservatism and
uncertainty are estimated independently (e.g. a very uncer-
tain parameter and small conservatism or vice versa), the
sensitivity measures for uncertainty and conservatism will
result in a different ordering.

A rank transformation of the input parameters and out-
put can be conducted if linear regression results in a bad fit
due to a strong non-linear relationship (Janssens et al.,
1992). In a rank transformation, the samples of each input
parameter are sorted and for each sample, the rank within
the sorted list is determined. The two measures of sensitiv-
ity for uncertainty and conservatism are then respectively
called SRRC (standardised ranked regression coefficients)
and wcRRC (worst case ranked regression coefficients).

The final order of the input parameters is done in so-
called tornado plots. A tornado plot is a convenient means
of graphically depicting which input parameters in a model
are the most influential. The graph is called a “tornado
plot” because of the tornado-like appearance of the graph
when factors are arrayed from most influential at the top to
least influential at the bottom (for example, see Fig. 5).

A highly sensitive input parameter indicates that collec-
tion of an additional measurement (or additional informa-
tion) on that input parameter is likely going to have the
most significant effect on the RCR of concern. This leads
to a more realistic RCR estimate. Note that the ordering
of the input parameters in the tornado plot assesses the
effect of adding one additional measurement only. The
effect of multiple, additional measurements for the same

or different input parameters require a more complex
algorithm.

The EUSES simulations were conducted in batch mode.
First, random samples for subsequent Monte Carlo simula-
tion were generated in the @Risk software package (Pali-
sade corporation, 1997) and saved in several EUSES
input files. Second, these input files were entered in the
batch mode of EUSES 2.0 (EC, 1998). The output from
EUSES was then statistically analysed.

2.3.3. Cost-sensitivity analysis

The proposed input parameter order in the tornado
plots is the basis for the development of a subsequent data
collection strategy. However, the most influential input
parameters may not be the cheapest ones to collect. There-
fore, a sensitivity ordering relative to the cost of each input
parameter collection may be found more useful. The cost
can refer to financial resources (expressed in euro) or to
human resources (e.g. number of working days/weeks).
The cost-sensitivity can be calculated as:

— Si
" Cost;

CS;

with S; and Cost; respectively the sensitivity (based on con-
servatism or uncertainty) and the cost of input parameter i.

2.4. Case study

2.4.1. Introduction

A case study will illustrate the concepts, the feasibility
and the usefulness of the developed intelligent data collec-
tion tool. A substance was selected that is currently under-
going an environmental risk assessment under the EU New
and Existing Substances Directive and will feed into
REACH. The substance will be named X for confidential-
ity reasons. The significance of the case as such is less
important as the developed risk refinement tool is applica-
ble for any substance (or group of substances).

The substance of concern is produced and consumed in
more than hundred sites covering several industrial sectors
following the life-cycle of the substance. For this paper,
one generic scenario and one site-specific scenario of a pro-
cessing sector were selected. Generic scenarios need to be
conducted to cover all sites for which no site-specific
information is available.

2.4.2. Data collection and estimation of uncertainty and
conservatism

The data on input parameters were collected from the
ongoing risk assessment. The parameter estimator can vary
in risk assessment from the 10th percentile (e.g. for flow),
mean or median (e.g. effluent discharge, solids—water parti-
tion coefficients) to the 90th percentile (effluent concentra-
tion, local production/consumption tonnage in a generic
scenario).

The conservatism was estimated as the absolute value of
the difference between the parameter estimate (following
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TGD practise, usually realistic worst case) and the average
estimate of all input parameters. This difference gives
zero for those parameters where no conservatism is
introduced.

The method for estimating uncertainty is depending on
the data/information availability. The selection of the dis-
tribution was largely based on the best fitting distribution
using the BestFit software (Palisade corporation, 1997)
and expert judgement. If multiple data points were avail-
able for an input parameter, both variability and uncer-
tainty were quantified using the parametric bootstrap
method (Verdonck et al., 2001). The estimated uncertainty
distribution of the estimator can be interpreted as sampling
uncertainty. Sampling uncertainty reflects the degree to
which sample results represent actual conditions for the
population sampled. If no data are available (e.g. because
the variability is not relevant or unknown) but data (and
an estimated probability distribution) are available for
the same input parameter on a different scale, then these
data and their estimated probability distribution can be
used as surrogate for the input parameter of interest. For
example, no data were available for the emission factor
to water/air for the generic scenario, and the probability
distribution based on the emission factors of the other sites
was used as surrogate uncertainty distribution. If abso-
lutely no data are available, then expert judgement can
be used to estimate the uncertainty. For example, the regio-
nal and continental emissions of X were based on a detailed
analysis of all sources. However, no data are available to
estimate the uncertainty.

For the ecotoxicity related input parameters, only the
effect of additional tests for the existing, available number
of species and endpoints was assessed. The effect of testing
additional species and endpoints was not assessed due to
the complex hierarchical dependency structure of individu-
als, endpoints and species in the derivation of a PNEC.

Eight-teen and third-teen input parameters were selected
for respectively the regional and two local exposure
analyses (regional/local emissions, partition coefficients,
regional background concentrations for several compart-
ments, effluent concentrations, river flows, removal efficien-
cies,...). The EUSES model was used to calculate the

Table 1

PECs. Ninety-five individual aquatic, sediment and terres-
trial chronic ecotoxicity tests were collected for the effects
assessment. SSDs were used to calculate the PNECs. For
this, the best fitting distribution was determined using the
BestFit software (Palisade corporation, 1997) and expert
judgement. The resulting deterministic risk characterisa-
tion ratios (RCRs) for the scenarios and the compartments
under study (water, sediment and soil) can be found in
Table 1.

3. Results
3.1. Estimation of uncertainty and conservatism

Lessmann et al. (2005) found that the distributional
shape of input parameters can greatly influence the vari-
ance of the EUSES output in uncertainty analysis. It is
expected that sensitivity analysis is more robust towards
deviations from distributional shape compared to uncer-
tainty analysis because the sensitivity measures are relative
measures of input and output uncertainties. Nevertheless,
the uncertainty and conservatism were carefully estimated
for all selected input parameters and the results can be
found in the online appendix. For most input parameters
(except for emissions), the uncertainty and conservatism
estimates of the exposure and effects are based on data
and can therefore be considered as reliable estimates. Log-
normal, gamma, normal, weibull and mainly uniform dis-
tributions were used to characterise the uncertainty of the
input parameters.

The uncertainty and conservatism estimates of the emis-
sions are based on expert judgement (this includes a com-
parison of emission estimates with other studies and a
mass balance exercise). Uncertainty ranges of 15-90% were
selected. These ranges are therefore uncertain themselves.
Only the uncertainty and conservatism of the main contrib-
uting emission sources was assessed and it was found how-
ever that no major sources of uncertainty or conservatism
can be identified based on the available information. Note
that several conservative assumptions were made on esti-
mates of minor contributing emission sources. These have,
however, no significant impact on the total emissions.

Results of deterministic risk characterisation ratios (RCRs), presence of readily ““within-EU-TGD-reducible conservatism’ and sensitivity measure for the

scenarios and compartments under study

Scenario Compartment Deterministic RCR Presence of “within-EU-TGD-reducible” conservatism? Sensitivity measures
Regional Water 0.034 No SRC
Sediment 1.66 No SRRC
Soil 0.20 No SRC
Local: GenericSite Water 0.041 Yes wcRRC, SRRC
Sediment 57.6 Yes wcRRC, SRRC
Soil 0.2 Yes wcRRC, SRRC
Local: SiteSpecific Water 0.03 Yes wcRC, SRC
Sediment 58.2 Yes wcRRC, SRRC
Soil 0.20 No SRC
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Fig. 3. Readily within-EU-TGD-reducible uncertainty of the risk char-
acterisation ratio (RCR) for the scenarios and compartments under study
(Note that RCRRegWater and RCRLocWater SiteSpecific coincide and
RCRRegSoil and RCRLocSoil SiteSpecific coincide).

The readily within-EU-TGD-reducible uncertainty of
the RCR for the scenario and compartments under study
are visualised in Fig. 3. The uncertainty distributions of
the sediment RCR are largely located above one. The
uncertainty distributions of the water RCR are largely
below one. The uncertainty distribution of the soil RCR
(for the generic scenario) is partly below and partly above
one. This is useful information to assess the potential to
change risk conclusions by collecting additional informa-
tion (see further in Section 4).

3.2. Contributions of input parameters to conservatism
and uncertainty

A risk refinement can be initiated if a risk is identified or
if more certainty on the risk outcome is desired. For the
case study, potential risks were identified for the sediment
compartment and sensitivity analysis was conducted for
those scenarios. No acceptable linear fit was obtained.
For this reason, a rank transformation was conducted.

3.2.1. Sensitivity of conservatism
The tornado plots analysing the sensitivity of conserva-
tism for the sediment compartment of the two local scenar-

‘ AVS.correction

Dilution

%]

EffluentLocalStp

1823

ios can be found in Fig. 4. There are more conservative
input parameters in the generic compared to the site-spe-
cific scenario. The most important input parameters
influencing the conservatism of the local, generic and site-
specific scenario for the sediment compartment are the
AVS correction and the dilution factor.

It can also be observed that the AF is inversely related
to RCR. This is counter-intuitive because an increas-
ing AF results per definition in an increasing RCR. This
means that in linear regression of the sensitivity analysis,
an inverse correlative relationship was, by coincidence,
observed. However, these coincidental correlations are typ-
ically negligible and not significant to the RCR of concern.
They are therefore an indication for the point in the tor-
nado plot under which the input parameters are no longer
significant (have negligible influence on the RCR of
concern).

3.2.2. Sensitivity of uncertainty

The tornado plots analysing the sensitivity of uncertain-
ties for the sediment compartment of all three scenarios can
be found in Fig. 5. The most important input parameters
influencing the uncertainty of the regional scenario for
the sediment compartment are the NOECs (No Observed
Effect Concentration) on Gammarus pulex (endpoint
growth) and Hyalella azteca (endpoint reproduction), the
regional emission to agricultural soil and the NOECs on
G. pulex (endpoint survival), Lumbriculus variegatus
(endpoint reproduction) and Tubifex tubifex (endpoint
reproduction). The most important input parameters influ-
encing the uncertainty of the local, generic scenario for the
sediment compartment are the AVS correction, the fraction
of X released to the surface water, the local effluent dis-
charge rate and the dilution factor. The most important
input parameters influencing the uncertainty of the local
site-specific scenario for the sediment compartment are
the AVS correction and the dilution factor.

Note that some input parameters can pop up in the
tornado plots that have no causal relationship with the
RCR of concern, e.g. the NOEC of Senecio vulgaris is a

AVS correction

E Dilution
Fwater.GeneriL:’D
Tonnage.GenericAD
Fair.GenericA
25 2 15 -'1 -6.5 0 0'.5 2 15 :1 -6.5 0
Sensitivity (WcRRC) Sensitivity (WcRRC)

Fig. 4. Tornado plots of the regional, local generic and site-specific scenarios (Left: RCRLocSed.GenericSite, Right: RCR LocSed.SiteSpecific) for the

sediment compartment, testing the sensitivity of conservatism.
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Fig. 5. Tornado plots of the regional, local generic and site-specific scenarios (Top: RCRRegSed, Bottom left: RCR LocSed.GenericSite, Bottom right:
RCRLocSed.SiteSpecific) for the sediment compartment, testing the sensitivity of uncertainty.

terrestrial ecotoxicity input parameter that is not used in
the estimation of the RCR for sediment. This means that
in the sensitivity analysis, some correlative relationship
was, by coincidence, observed. However, these coincidental
correlations are typically negligible and not significant to
the RCR of concern. These coincidental correlations can
be avoided by conducting a priori a mechanistic analysis
and by selecting those parameters that are expected to have
an influence on the RCR of concern.

AVS.correction

Fwater.Generic :I
FStpWater.Genericii:I

i
Gammarus.pulex.growth D
[

KpSusp
Senecio.vulgaris.reproducti{

Isotoma.viridis.groth

Ave.sativa.yield.grain D

For the other compartments under study, the following
observations can be made (tornado plots not shown). For
the regional and local site-specific RCRs of the water com-
partment, the background concentration and subsequently
aquatic ecotoxicity values are the most influential input
parameters. For the regional and local site-specific RCRs
of the soil compartment, the regional emission to air and
subsequently terrestrial ecotoxicity values are the most
influential input parameters. Only for the local, generic

Fwater.Generici:I

FStpWater.Generici:I
KpSusp l:l
Gammarus.pulex.growth D
Senecio.vulgarisxeproductiE
Isotoma.viridis.grow{
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10.0003-0.0002 0.0001 0  0.0001 0.0002 0.0003
Cost-corrected Sensitivity (SRRC)

Fig. 6. Tornado plots of the local generic scenario for the sediment compartment, testing the sensitivity of uncertainty (left) and the sensitivity corrected

for costs (right).
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scenario, a combination of exposure input parameters
(background concentration, effluent discharge rate, dilu-
tion factor, fraction emission to water, presence/absence
STP) and effects input parameters (ecotoxicity values)
was found to be influential.

3.3. Cost-sensitivity of input parameters

The cost-sensitivity analysis is illustrated for the local
generic scenario in the sediment compartment (results,
see Fig. 6). For this, the effects related input parameters
were estimated to cost 2000 € each and the exposure related
input parameters were estimated to cost 1500 € each
(except AVS correction 3000 €, AF involves field testing
estimated at 20,000 €). These amounts are for illustrative
purposes only. It was assumed that it is cheaper to collect
exposure related data through sending a questionnaire to
the industrial sites of concern than to conduct laboratory
ecotoxicity tests. This, of course, very much depends on
the number of sites of concern, the species to be tested,
etc. Fig. 6 evidently shows that costly input parameters
decrease in importance and less costly input parameters
increase in importance.

4. Discussion
4.1. Worthwhile to refine?

The RCR uncertainty distributions enable the risk asses-
sor to assess whether there is potential to change the risk
conclusions by updating the input parameters or, in other
words, whether it is worthwhile to refine the assessment.

In this case study, a potential risk is identified for the
sediment compartment in all three scenarios. Input param-
eter refinements can possibly decrease the conservatism and
decrease the uncertainty of the RCR estimate. However,
further refinements of the considered readily “within-EU-
TGD-reducible” input parameters for the sediment com-
partment will most likely not turn a “potential risk’ into
a “no risk” outcome because the RCR uncertainty distri-
bution is located largely above one (see Fig. 3). Similarly,
further refinements for the water compartment will not
turn a “no risk’ into a “potential risk” outcome. Further
refinements can, however unlikely, turn a “no risk” into
a “potential risk” outcome for the soil RCR (for the gen-
eric scenario).

Based on the assessment above, a risk assessor may
decide not to conduct additional risk refinements but to
choose directly for implementation of RMMs for the risk
scenarios. In this paper for illustrative purposes, it was
decided to use the risk refinement tool for the sediment
RCR anyway.

4.2. Which input parameters to refine?

In the proposed intelligent data collection strategy, the
goal is to reduce the conservatism first (or increase the

accuracy), and then to reduce the uncertainty (or increase
the precision) by collecting additional information or con-
ducting one additional test for the ‘“‘readily-within-TGD-
reducible” input parameters.

The most conservative input parameter relative to the
RCR to refine is the AVS correction and the dilution factor
in both local scenarios. In the site-specific scenario, infor-
mation on dilution factor requires information on the efflu-
ent discharge rate and the river flow rate. This can be
obtained through search and collection of flows of nearby
gauging stations or by conducting flow measurements at
the site. In the generic scenario, this would require the col-
lection of additional information of all non-covered sites.
This is a more resource-demanding effort. Measurements
on AVS in the sediment can be conducted at the site or
at all non-covered sites. Collection of these input parame-
ters should result in a decrease in conservatism and conse-
quently a decrease of the RCR (at least if the initial input
parameter values are indeed conservative enough).

The most uncertain input parameters relative to the
RCR to refine come from both the exposure and effect
assessment. Generally speaking in this case study, one
observes the presence of more exposure input parameters
in generic scenarios and more effect input parameters in
site-specific/regional scenarios because in the latter expo-
sure information is typically more abundant.

The ecotoxicity input parameters pop up in the tornado
plots of every scenario and are therefore an important
opportunity for refinement. The most important ecotoxic-
ity input parameter appears to be the species mean for G.
pulex on growth. This is not the most sensitive species
(H. azteca is) but the species mean for G. pulex on growth
is based on a smaller number of data points (laboratory
tests, references from literature) than the H. azteca input
parameter. Consequently, the order of ecotoxicity input
parameters is a combinatorial effect of both influential
(very sensitive species have a large effect) and the uncer-
tainty (less samples for a specific species and endpoint have
large effect).

The most important exposure input parameters in all
scenarios are related to the emissions (the actual emissions
or the emission factors). A subsequent data collection strat-
egy would therefore be to collect more information on
emissions related input parameters (such as influent/efflu-
ent concentration) or information on the actual industrial
process (for example, which RMMs are taken to reduce
losses during the processing). In the generic scenario, local
input parameters as dilution factor and effluent discharge
rate are also important.

The tornado plots are found to be a suitable visualisa-
tion of input parameter ordering and refinement that forms
the basis for the development of an intelligent data collec-
tion strategy. If budget is important to consider, the cost of
additional testing and its influence on the input parameter
ordering can be included. The sensitivity measures are a
combination of the input parameter sensitivity towards
the RCR as such (which can remain the same for the same
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type of substances) and input parameter uncertainty/con-
servatism (which is different for each substance and even
within the phase of data collection of the same substance,
it is solely dependent on data availability).

Once additional data are collected for one or more influ-
ential input parameters, the iterative process of recalculat-
ing RCR and identification of the most influential/
uncertainty input parameters can continue until no further
refinement is needed/possible. Further refinement steps
relate to the non-readily “within-EU-TGD-reducible”
input parameters and the EUSES model structure and
assumptions. However, this requires approval of the com-
petent authorities as the regular procedure is modified
through such changes.

5. Conclusions

This paper demonstrated the usefulness of an efficient
risk refinement tool (based on sensitivity and uncertainty
analysis on the risk assessment model EUSES) to check
whether further refinement is worthwhile and if so, to iden-
tify and order the most conservative and uncertain ‘“within-
EU-TGD-reducible” input parameters influencing the local
and regional risk characterisation ratios. The ordering can
also be adjusted to the costs involved in additional testing.
Although this risk refinement tool initially requires more
effort, it can have its merit in the iterative nature of the risk
assessment process especially under the new chemical EU
policy, REACH, which aims to assess tens of thousands
of chemicals.
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