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Wastewater treatment systems have, over the past decades, been subjects for optimization and control research.
One of the most intricate problems faced is that direct measurements of the variables of interest are seldom
available. A large part of research has therefore been aimed at the extraction of suitable information from
indirect measurements such as dissolved oxygen, pH, and oxidation reduction potential (ORP). Even if relatively
complex tools, such as neural networks and fuzzy logic, have been used to conceive control laws, advantage
is seldom taken of such tools with respect to development of the actual control algorithm. In this paper, a
simple yet effective tool is presented that allows the detection of a desired process state by means of the
Hotelling’s T2 statistic. The detection tool is generic in nature and is thereby applicable to any process where
a certain desired state is to be detected by means of measured variables reflecting the targeted state. Its
advantages over formerly proposed control strategies are discussed, and the precautions that were taken to
render its application robust are presented. It is shown by means of a laboratory-scale sequencing batch
reactor (SBR) setup for nutrient removal from wastewater that the proposed controller allows one to detect
the targeted endogenous state and that its application leads to effective optimization of the overall system
performance. More specifically, the length of the optimized phase is reduced by 41% of its original default
length and a reduction of 5% is estimated for the expected energy consumption by the aeration system. In
addition, effluent concentrations of total nitrogen and nitrate nitrogen are estimated to be lower by 30 and
25%, respectively. This is attributed to the gained length of the anoxic phase subsequent to the aerobic phase.

Introduction

Online optimization of wastewater treatment plant operation
is a subject that has received considerable attention since the
beginning of the 1990s.1,2 An important concept for control of
aerobic reactors or aerobic phases of alternating or cyclic
systems is the endogenous respiration state. This state is typical
for aerated wastewater treatment systems where all (desired)
oxidation reactions are finished. This means that (1) organic
pollutants (carbonaceous compounds) are oxidized; (2) bulk
nitrogen compounds are oxidized (i.e., all ammonia and nitrite
is oxidized to nitrate); and (3) the phosphorus uptake rate (PUR)
becomes minimal (i.e. the rate at which phosphate accumulating
organisms (PAOs) internalize phosphorus becomes small).
Ideally, the phosphate concentration in the bulk liquid is then
close or equal to zero. In general the three described reactions
do not necessarily occur in the same location, at the same time,
or with equal intensity, nor are they completed at the same time.
Continued aeration beyond the point in time where the endog-
enous state is reached is economically uninteresting as no
improvement of effluent quality can be expected from further
investment of aeration energy. On the contrary, secondary
phosphorus release has been observed in endogenous conditions3,4

and extended aeration may deteriorate sludge settling properties.5

Consequently, the detection of the endogenous state has been
an appealing research subject to many.

In the broad spectrum of bioprocessing, a few contributions
relate to the detection of reaction end points. These works cover
the development of cheap indirect measurements6,7 or actual
algorithms.8-10 The fact that the latter works in fields other than
wastewater treatment have remained largely unconnected so far
suggests that phase end detection is a problem typically solved
in an ad hoc fashion and that little consensus is available on
the optimal way to detect process phase end points.

Indirect Measurements for Inference. Sensors for oxygen,
pH, oxidation reduction potential (ORP), and conductivity are
abundant and cheap on the market, use no chemicals, require
low maintenance, and are generally accepted in industrial
practice following decades of experience. Therefore, a fair
amount of historical research aimed at the online assessment
of the endogenous respiration state in the aerobic phase by
means of these sensors. The earliest results have been obtained
on the basis of tracking of the oxygen uptake rate (OUR) or
the dissolved oxygen (DO) concentration.3,11-14

Alternatively, the entry into the endogenous respiration state
can be based on the ORP and/or pH profiles of nitrification
systems.15-26 Applications focused on nitrogen removal that
combine information in OUR, ORP, and/or pH can be found
as well.27-30 DO, ORP, and pH have also been combined for
optimization of a nitrogen and phosphorus removing laboratory-
scale plant.31

Conductivity is a fourth common measurement and is related
to the bulk phosphorus concentration.27,32 The rate of change
of the conductivity approaches zero as phosphorus uptake
becomes minimal and thus provides a cheap way for identifica-
tion of the end of phosphorus uptake.33 However, convincing
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results regarding conductivity profiles in the context of simul-
taneous nitrogen and phosphorus removal are not established
as yet.

Historical Control Strategies. For systems where rather
accurate models can be established, methods have been estab-
lished to optimally switch between controllers optimal for
different situations. For example, multimodel strategies link a
set of models to different, locally optimal control laws. By
means of online observers, one can select the best-fitting model
to recent measurements and one can switch to the corresponding
control law.34 Given an accurate model then, the detection of
reaction end points becomes fairly trivial.

Unfortunately, accurate models may be hard to come by in
many cases. For such conditions, most academic works suggest
the evaluation of a set of preset rules, which are established on
the basis of system knowledge or operators’ experience. To this
end, artificial neural networks (ANNs) can be used to predict
or filter nutrient concentration measurements35-37 or to identify
and locate the targeted breakpoints.38 Fuzzy control is another
alternative.39 Strikingly, in all of the latter applications, the
artificial intelligence or data mining part of the method is never
used to construct the decision boundary. In addition, redundancy
in the used signals is never accounted for when building the
reported models or controllers. A single study only delivers the
application of a data mining tool, i.e., fuzzy C-means clustering,
for control of wastewater treatment plants in which (1) data
redundancy is inherently accounted for and (2) the predicted
cluster directly leads to the pursued control action.31 Data
samples from the monitored system are grouped by the
clustering algorithm into two major groups, representing the
exogenous and endogenous respiration state. During active
control, a new data sample is assigned to one of the clusters,
hereby indicating whether the system is in exogenous or
endogenous state. In the cited work, ammonia depletion occurred
after completion of phosphorus uptake. As a result, the obtained
cluster model may not function well when phosphorus uptake
stops before ammonia depletion. As such, the resulting controller
may lead to an inappropriate control action.

In this paper, a multivariate control strategy is proposed which
does not suffer from the latter problem while it remains simple
to implement. Indeed, an approach is presented to shut down
the aerobic phase which makes no explicit assumption on the
behavior of the data when the process is off-target (exogenous
respiration in our case), except for being dissimilar to the on-
target behavior (endogenous respiration).

In what follows, the generic conception and design of the
proposed controller is given after which the case study is
described and the use of the controller is motivated. In Results,
the performance of the provided method is evaluated in terms
of reaction end-point detection and overall process improvement.

Materials and Methods

In what follows, the applied method, its underlying assump-
tions, and the proposed integration for control are given. First,
the method is described, and implemented adjustments are
motivated. Then, the proposed controller including the applied
statistical test for similarity is presented. Finally, the real-life
case study in which this controller was tested is described.

Model for State Detection. We consider that a specific
(temporary) state of the system is often characterized by its
values for the process rates. Consequently, assessing whether
the state of a process is similar to a desired state may be
achieved by assessing the values or trends of process data and

comparing them to typical values corresponding to the desired
state. The following multivariate strategy is proposed to do so.

Variable and Sample Selection. First, variables of which
the values can describe the targeted state are chosen, and
historical data samples that reflect the targeted state are selected
by operators or process experts. Hence, both these steps require
essential knowledge of the system under study. Second, a model
that describes these data is established, and one or more tests
that allow the evaluation of similarity of new data samples to
the selected data are devised. The data-driven modeling approach
used in this work avoids the need for an exact mechanistic
description of the data behavior in the targeted state. Third, the
constructed tests are used to classify new samples as being
similar to the data described by the established model or not.

Modeling. While other measures may be valid for the given
purpose, the Mahalanobis distance40 to the mean of the selected
historical data samples is used in this study as a measure for
similarity. Practically speaking, one computes the mean vector,
m, and the covariance matrix, S, by means of the obtained data
matrix, X (dimensions N × M):

The Mahalanobis distance, D, is then computed as follows
for a (new) multivariate observation, X(i,...), provided that S is
invertible:

To define a critical value for this similarity measure, it is
common to assume a multivariate normal distribution. When
done so, the Mahalanobis distance is equivalent to the Hotell-
ing’s T2 statistic and follows an F-distribution in the case of
new observations and for which a theoretical statistical limit is
available.41 Such limit defines an ellipsoidal region within
which-theoretically-a given percentage of the data are ex-
pected to lie given the modeled conditions (i.e., under the null
hypothesis). As such, the Hotelling’s T2 is used as a metric to
define a region in which the belief that the data are similar to
the historical data of this targeted state is acceptable. Practically,
if the calculated statistic for a new data sample is below its
corresponding limit, then the test is positive; i.e., the analyzed
data sample is judged to be similar to the data described by the
model, and, consequently, the state of the system is judged to
be similar to the desired state. If the statistic is above this limit,
the test is negative; i.e., the analyzed data sample is considered
not to be similar to the described data.

The following assumptions underlying the statistical test are
emphasized:

(1) The samples are assumed independent. This means that
no autocorrelation exists between consequent measurements.
This requires that the mean values of the tracked variables are
constant over time for the targeted condition and the same for
all batches (constant mean process).

(2) The samples are drawn from a multivariate normal
distribution.

Since neither of these two assumptions is normally true, care
should be taken when interpreting or implementing the test. In
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view of the latter, pragmatic adjustments to the test are made
in the following section.

Adjustments to the Test. Any deviation from the assump-
tions above may result in an inappropriate calculation of the
statistical limit. An overestimation of this limit may result in
too many positive tests for samples that are not truly similar to
the data described by the model (false acceptance or type II
error). An underestimation of the statistical limit may result in
too many negative tests for samples that are truly similar to the
data described by the model (false rejection or type I error). In
this study, a type I error would mean that the phase to be
optimized is continued beyond the true starting point of the
endogenous respiration (as the desired conversions are com-
pleted), therefore possibly leading to an unintended increase of
economical cost. A type II error would mean that the phase is
ended while the desired (bio)chemical conversions are not
completed yet; i.e., the phase is ended too early, hereby leading
to unmet targets for the given phase and possibly for the running
and upcoming cycles as a whole.

Completing the biochemical conversions was considered of
paramount interest in this study. A type II error was thus
considered worse than a type I error. Given this and given that
the assumption on normally distributed data is not generally
valid, the test is adjusted as follows:

(1) A theoretical 90% limit is used. This is lower than the 95
or 99% levels which are more commonly applied. Geometrically
speaking, the volume of the ellipsoidal region is made smaller.
As a result, the chance for a type I error (too late) is increased
and the chance for a type II error (too early) is lowered compared
to what common practice would have delivered.

(2) A set number of consecutive positive tests, Ncrit, have to
be established before the process is considered to have reached
the desired state. This means that the Hotelling’s T2 test needs
to remain below its limit for at least Ncrit times the sampling
interval before the phase is ended by the controller. This actual
test is thereby more restrictive and therefore leads to an increase
in type I error and decrease of the type II error, as desired.

Integrated Controller. A control strategy, based on the
statistical test devised above, is proposed. The strategy is
generally applicable to any optimization problem for which the
detection of a temporary state is necessary. Until a minimal
length of the optimized phase, tmin, is reached, a counter, C, is

kept to zero. As soon as this minimal time length is reached,
the counter is allowed to increase. While the phase is running,
preprocessed data are obtained from the raw online data. In this
study, data preprocessing consists of a second-order low-pass
Butterworth filter. The devised (statistical) test is then used to
determine whether the process is in the desired state. If the
process is detected to be in this state (T, true) the counter is
increased by one; if not (F, false), the counter is reset to zero.
If the counter reaches the set Ncrit or if the running time of the
phase has reached its maximal length, the phase is ended and
the next phase is started. The latter control action is referred to
as the shut-down control action. As a new batch or cycle is
started, the control algorithm is reinitialized.

Case Study. The studied process is a sequencing batch reactor
(SBR) process for nutrient removal (nitrogen and phosphorus)
in which each cycle consists of five major phases. The system
is operated with a total fixed cycle length of 6 h, a hydraulic
retention time (HRT) of 12 h, and a sludge retention time (SRT)
of approximately 15 days. Minimal and maximal operational
volumes are 34 and 64 L, respectively. For further details, the
reader is referred to the work of Insel et al.42 A scheme of the
standard operation (without phase length optimization) can
be found in Figure 1 (top). This standard operation with fixed
phase lengths for the constituting phases exhibits an anaerobic
phase (60 min, ANAER), including the addition of influent
during the first 30 min; a first aerobic phase (130 min, AER1);
an anoxic phase (80 min, ANOX), including the addition of
some more influent during its first 10 min; a second aerobic
phase (30 min, AER2), including sludge wastage in its last
minute; a settling phase (45 min, S); and a draw phase (15 min,
D). This reference operation was designed on the basis of basic
texts such as the IWA Report on SBRs5 and experience available
within the research group.43,44 In this design, the length of the
aerobic phase is longer than needed on average, because the
completion of oxidation processes is considered primordial. In
both aerobic phases, a PID controller (with antiwindup and
bumpless transfer) is used to get and maintain the oxygen level
at the desired set point of 2.0 mg/L. The phase that is optimized
in terms of length by the proposed control algorithm is the first
aerobic phase (AER1). The total length of the batches is however
kept constant, by extension of the length of the anoxic phase.
Note that this extends the time allowed for the denitrification

Figure 1. SBR phase scheduling in default and new operation.
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process increasing the nitrate removal capacity, while reducing
the aeration time. This is desirable for the system under study
as the nitrate reduction is typically incomplete. The schedule
that results is given in Figure 1 (bottom). The minimal length
of the aerobic phase was set to 60 min. The maximal length of
the aerobic phase was defined to be 130 min, as in the standard
operation. The length of the anoxic phase is hereby minimally
80 min and maximally 150 min.

Selection of Modeled Variables and Qualitative Inter-
pretation. The trajectories of the filtered air flow rate and the
filtered derivatives of oxygen concentration, pH, and ORP during
the studied aerobic phase are shown in Figure 2. The applied
Butterworth filters were tuned so as to obtain a cutoff period of
5 min (150 times the sampling interval). The derivative of the
DO (dissolved oxygen) is positive until minute 40 in the aerobic
phase. This is the point where the (controlled) dissolved oxygen
level stabilizes around its set point for the first time (not shown).
This correlates with a stabilization of the air flow rate (Figure
2b), which is manipulated to control the oxygen level. The PID
controller is sluggish in the exogenous time span of the aerobic
phase as the applied tuning aimed at avoiding heavy oscillations
in endogenous conditions. The DO level and air flow rate remain
around the same level from minute 40 until minute 80
(derivative around zero). At this point, the DO level increases
due to a decreased oxygen consumption of the biomass, the
DO controller is not able to reject this disturbance immediately,
but, at time 100 min, the DO level is again controlled to the
desired set point but now at a lower air flow rate. As a result of
the described changes in air flow rate, the derivative of the DO
level becomes negative and levels off toward zero as the oxygen
level stabilizes again around its set point. The latter series of
events, starting with the increase of the oxygen level, indicates
the start of the endogenous respiration state, which continues
until the end of the aerobic phase. Continuation of the aerobic
phase beyond minute 105 is therefore considered undesired.

From the start of the phase until minute 34, the pH derivative
is positive (Figure 2c). This shows the net positive effect of
CO2-stripping (increases pH) and the first nitrification step
(acidifying), also identified as biological ammonia oxidation or
nitritation.45 As the CO2 concentration decreases, the acidifying
effect of nitrification begins to dominate, resulting in a negative
sign of the first derivative at minute 34. The sign of the
derivative remains below zero for the remainder of the phase.
At the onset of the endogenous respiration, the derivative
increases from minute 85 to 105 due to a reduced nitrification

rate, while CO2 stripping continues and remains approximately
at the same level from minute 105 onward.

The derivative of the ORP level (Figure 2d) increases from
minute 10 to 40. From minute 40 to 85 onward, the ORP level
exhibits a steady increase, simultaneous with the steady behavior
of the air flow rate and oxygen level. This indicates a steady
increase in the oxidized nitrogen concentrations (NO2

--N,
NO3

--N). At minute 85, a fast increase in the derivative
(acceleration of the ORP level) is observed, as the nitrite-nitrate
redox buffer is breached.46 By minute 85, the second nitrification
step (biological nitrite oxidation, nitratation) is thus completed.
By minute 115 the ORP derivative stabilizes again, indicative
of the next redox buffer (i.e., [O2/H2O]). In summary, the
described variables reach a certain level in the endogenous
respiration state and remain close to that level afterward.

It is noted that the conductivity measurements were available
but have not been included as a variable to be described by the
constructed model. This is supported by (1) the fact that
unambiguous interpretation of conductivity profiles in waste-
water treatment systems is not reported as yet and (2) the quality
of this sensor’s data was insufficient for inclusion in the model.47

An intensive measurement campaign was set up to measure
the effluent quality variables total nitrogen (TN), total ammonia
nitrogen (TAN), nitrite nitrogen (NO2

--N), nitrate nitrogen
(NO3

--N), and inorganic phosphorus (PO4
3--P) during the

batch corresponding to the online measurement profiles de-
scribed above. Figure 3 shows the trajectories of these variables
during the aerobic phase of this batch. As can be seen, the
ammonia level lowers from about 9 mg of N/L at the beginning
of the phase to approximately zero at minute 80, due to
biological ammonia oxidation. As a result, nitrite is produced
and further oxidized into nitrate. The nitrite level increases
during the aerobic phase until minute 70, due to an apparently
lower rate of the nitrite oxidation. As the production of nitrite
decreases afterward, nitrite levels decrease again to approxi-
mately zero by minute 85. The nitrate level increases during
the aerobic phase, from approximately zero at the beginning
up to 11 mg of N/L at minute 115. Not surprisingly, the entry
into the endogenous respiration state as described in the previous
paragraph occurs simultaneously with the depletion of ammonia
and nitrite.

It is observed that the total nitrogen concentration at the end
of the aerobic phase (as NO3

--N) is larger than the original
nitrogen concentration at the beginning (as TAN). Two sources

Figure 2. Filtered values of air flow rate (Qf,air) (b), and filtered derivatives
of DO (a), pH (c), and ORP (d) during the aerobic phase.

Figure 3. Measured profiles of total ammonia nitrogen (TAN), nitrite
nitrogen (NO2

--N), nitrate nitrogen (NO3
--N), and inorganic phosphorus

(PO4
3--P) during the aerobic phase of an intensively sampled batch.
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for this discrepancy are identified. First, due to filtering of the
samples, the TAN measurement only represents bulk ammonia
nitrogen and thus excludes cell-internal ammonia and nitrogen
bound to organic materials such as in proteins. Second,
disintegration of biomass and hydrolysis processes continues
during the aerobic phase and results in the release of new
ammonia nitrogen during the aerobic phase. As a result of both
effects, the TAN value at the beginning of the aerobic phase
does not represent all the nitrogen that is eventually converted
to nitrate and released to the bulk liquid.

Biological phosphorus uptake takes place simultaneously with
the described nitrogen oxidation processes indicating no electron
acceptor competition, as is expected at abundant oxygen levels
of 2 mg/L. The inorganic phosphorus is internalized by the
PAOs, hereby leading to a reduction of the bulk inorganic
phosphorus concentration, which is measured. This process halts
at minute 85, right at the start of the endogenous respiration.
The measurements suggest that the inorganic phosphorus
concentration lowers further from minute 105 to the end of the
aerobic phase. Still, the larger part of the phosphorus uptake
(approximately 80%) takes place at a relatively fast rate before
the endogenous respiration state is observed in the online
measurements.

It can therefore be concluded that the intensive measurement
campaign confirms that when the endogenous respiration is
reached, the nitrogen oxidation processes are finished and a
larger part of the phosphorus is taken up by the PAO biomass.
As such, it is considered desirable to end the aerobic phase when
the endogenous respiration state is reached. This state is
detectable on the basis of the described online measurements
as was shown above. Therefore, these four described online
measurable variables have been included into the statistical
model. In addition, the derivative of the air flow rate is added
as a fifth variable. The latter is a valid measure for similarity to

data stemming from endogenous respiration as well, given that
the steady behavior of the air flow rate during endogenous
respiration results in a derivative close to zero.

Sample Selection and Applied Model Parameters. The data
samples used to construct the model were selected as follows.
First, a set of 10 batches exhibiting endogenous respiration
behavior at the end of the first aerobic phase were selected by
the operators among the batches run in the week before the phase
shut-down controller implementation. The point at which the
operators believed that the variables showed endogenous
respiration behavior was determined for all of them. When
opinions differed, the latest point in time indicated among the
operators was chosen. All data samples after this point in time
and before the end of the aerobic phase were used for modeling.
As mentioned before, a 90% limit was used for a single
statistical test and a cutoff period of 5 min was applied for data
filtering. To shut down the aerobic phase, the statistical test was
required to be below its limit for 30 consecutive tests () 1 min).

Results

Detection Performance. In Figure 4 the Hotelling’s T2

statistic is shown as evaluated during the aerobic phases of two
batches. Batch 1 is a batch in which the implementation of the
control algorithm in LabView was verified without execution
of the shut-down control action if commanded. The Hotelling’s
T2 statistic remains above its 90% limit until 110 min in the
batch. In the following minute, the statistic did not rise above
the set limit and the shut-down of the aerobic phase is therefore
commanded by the algorithm at 111 min in the aerobic phase
(i.e., after 30 consecutive positive tests). Since the command
was not passed on to the actuators (aeration, pumps), the
Hotelling’s T2 statistic could be evaluated beyond this point in
time. As can be seen, the statistic did not rise above the set

Figure 4. Square root of Hotelling’s T2 statistic during the first aerobic phase of a test batch (1) and the first batch with online phase optimization (2).
Vertical lines indicate when the shut-down of the aerobic phase is commanded. The horizontal line indicates the applied 90% limit.
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limit again. This was equally concluded for three other consecu-
tive batches (not shown).

With respect to the supplied air, the proportional volume of
air (and thus energy) that would be saved by the controller
amounts to 1.6% (for the test batches). This is a relatively low
reduction and is largely due to the fact that a PID controller for
the oxygen level was already active in the reference operation.
Indeed, it was shown already that the air flow rate is reduced
significantly by the PID controller in response to the reduced
oxygen consumption by the biomass.

The plant operators also confirm that endogenous respiration
was achieved when the end of the aerobic phase is commanded
by the controller for these test batches. On the basis of these
preliminary tests, it was decided to activate the control
algorithm, i.e., to actually execute the shut-down control action
when commanded. The Hotelling’s T2 statistic trajectory for the
first batch in which the control algorithm was completely
activated is also shown in Figure 4. In this batch, the Hotelling’s
T2 statistic remains above the 90% limit until 95 min into the
aerobic phase. In the minute following this point in time, the
Hotelling’s T2 statistic remains below the set limit. As a result,
the transition from the aerobic phase to the anoxic phase at 96
min in the aerobic phase is commanded. Consequently, the
aeration is switched off and the anoxic filling is started at minute
96, hereby gaining a precious 34 min for denitrification.

For a testing period of 10 days, Figure 5 indicates the time
instant at which the aerobic phase was ended and the anoxic
phase was started. As can be seen, in each of the 37 batches,
the aerobic phase is ended by the controller before its default
end, hereby leading to an effective shortening of the aerobic
phase in each batch. The mean time at which the aerobic phase
was ended was 76 min, i.e., 54 min before the default end of
the aeration time. Put otherwise, a mean reduction of 41% of
the length of the aerobic phase was obtained. The mean added
length for the anoxic phase compared to its default length is
78%.

The saved air volume was estimated by assuming that the
air flow rate would remain equal to the air flow rate at shut-
down time until the end of the aerobic phase. As such, the
fraction of air that is saved is estimated to be 5.3% over the
testing period. This is an optimistic value as it can be expected
that the respiration rate drops further after reaching the endog-
enous respiration state. With the same way of estimation, i.e.,

assuming a constant air flow rate beyond phase shut-down, the
estimated reduction would be 2.1% for the batches used during
algorithm testing, as opposed to the actual 1.6% observed above.

System Performance. In Figure 6, the daily measurements
of the effluent quality variables nitrate nitrogen (NO3

--N),
nitrite nitrogen (NO2

--N), total ammonia nitrogen (TAN), total
nitrogen (TN), total phosphorus (TP), and chemical oxygen
demand (COD) are shown from 20 days before implementation
of the controller until 11 days after implementation. For
descriptive purposes, the medians (MED) of the measurements
in the periods before and after implementation are shown
together with the medians plus and minus twice the median
absolute deviation (MAD) from these medians. The former
indicate the central tendencies of the measurements during the
respective periods, while the latter are indicators for the spread
of the measurements. These descriptors are more robust toward
outliers than the classic mean and standard deviations. To
evaluate the effect of the controller implementation on the
process performance, the two-tailed Mann-Whitney-U statisti-
cal test48 (MWU) is applied to the measured effluent qualities.
The two groups are defined as the considered effluent quality

Figure 5. Length of the aerobic phase during active phase length optimization.

Figure 6. Effluent concentrations before and after controller implementation:
(a) NO3

--N, (b) NO2
--N, (c) TAN, (d) TN, (e) TP, and (f) COD. In each

graph, the vertical full line separates the periods before and after the
activation of the controller. The horizontal dashed lines indicate the median
values in each period. The horizontal full lines indicate the median (
2(MAD) (mean absolute deviation) values in each period.
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measurements before and after, respectively, controller imple-
mentation. The null hypothesis for the test is then that there is
no difference between the two groups; i.e., that the controller
implementation had no effect. This nonparametric test does not
assume normality and is less prone to the influence of outliers
(in contrast to its parametric equivalent, the Student’s t test) at
the cost of statistical power. The p-values as well as the so-
called Z-scores (for the sample before implementation) are
computed. Practically, the latter scores are positive (negative)
in the case of a raising (lowering) effect. The null hypotheses
are to be rejected at 0.05 (5%) significance level. Results are
found in Table 1.

For the effluent nitrate concentrations, the two-tailed MWU
test delivers a p-value of 0.00018. In other words, the probability
that the controller implementation delivers no effect is estimated
to be less than 1 in 5000. The negative value for the cor-
responding Z-score indicates that the effect is negative; i.e., the
phase shut-down controller has decreased nitrate effluent
concentrations. This is visually confirmed in Figure 6a. A 25%
reduction is estimated on the basis of the median nitrate values
for both periods. Even though visual inspection may suggest
higher nitrite values in the period after implementation (Figure
6b), no effect is statistically acceptable on the basis of the MWU
test. It is noted that less samples were taken for nitrite
concentration measurement, hereby reducing the statistical
power of the test. The TAN measurements (Figure 6c) are
generally low, which suggests that nitrification is completed
during the larger part of the batches both before and after the
controller implementation. This hypothesis is accepted on the
basis of the two-tailed MWU test (p-value ) 0.28). The phase
shut-down controller has a lowering effect on the TN values
(p-value ) 0.0089, negative Z-score) as is suggested by visual
inspection of Figure 6d. On the basis of the median values, a
reduction of more than 30% in effluent nitrogen is computed,
which is largely due to the confirmed reduction in nitrate
effluent. Indeed, ammonia and nitrite concentrations did not
change significantly. Total phosphorus concentrations were not
influenced by the phase shut-down controller as can be
concluded from both the two-tailed MWU test as from visual
inspection (Figure 6e). Though visual inspection of the COD
values suggests a lowering and stabilizing effect of the controller
on COD (Figure 6f), the MWU test does not reject the null
hypothesis and an effect of the controller implementation on
the COD concentrations is therefore not considered proven.

Given the former evaluations of effluent quality criteria, the
evaluated effects of the controller implementation on the overall
performance of the system can be summarized as follows. The
implementation of the controller has led to an effective reduction
of the effluent nitrate nitrogen and total nitrogen while the levels
of ammonia nitrogen, nitrite nitrogen, total phosphorus, and
COD before and after controller implementation are not
significantly different. It can therefore be concluded that the
implementation of the controller has unambiguously led to an
overall improvement of the effluent quality.

Discussion

An online phase length optimization strategy is proposed on
the basis of the evaluation of a simple multivariate distance

measure, the Hotelling’s T2 statistic. By doing so, correlation
between variables included in the inference mechanism is
directly accounted for, as opposed to the major part of methods
for SBR phase length optimization found in literature. In
addition, the method avoids the description or modeling of other
conditions than the targeted one. As a consequence, the
performance is not affected by the path by which the target state
is attained. Also, the implementation of the underlying statistical
model is straightforward and leads directly to the control
decision as opposed to a larger part of applications based on
data-driven tools found in literature. Large type II error rates
(switching too early to the anoxic phase) were avoided by
requiring multiple consecutive positive tests before the actual
shut-down decision and by adopting a relatively low confidence
limit.

A successful application of our method depends on the
following. First of all, the ellipsoidal region defined by the
critical Mahalanobis distance must reflect the desired final state
for the optimized given phase only. In other words, no other
prior status of the process should be characterized by similar
data. Signals that allow defining such a region should therefore
be available and appropriately selected, in turn requiring sound
understanding of the system to be optimized. Second, the
algorithm requires the inversion of the covariance matrix, S.
Thus, this matrix needs to be properly conditioned. If this is
not the case, we suggest the use of robust covariance estimators
or factorization methods such as principal component analysis41

to tackle this problem.
The proposed algorithm was successfully tested and led to a

mean phase length reduction of 41%. One should note that this
number highly depends on the default operation. In our case,
the aerobic phase in the original operation was characterized
by a 130 min length so to obtain full nitrification by default, on
the basis of a heuristic design accounting for large variations
in biomass activity. On the basis of Figure 5, one may consider
that one should compare our strategy with a fixed, default length
of 80 min for the aerobic phase, by which one may achieve
similar results as for online phase shut-down controller. Still,
such a strategy would not account for changes in load and
biomass activity and may lead to incomplete nitrification in some
cycles, which favors the use of an online controller such as ours.
As indicated before, complete nitrification was of utmost
importance.

The estimated proportional reduction in air supply is estimated
to be at most 5.3%. As such, improved effluent quality is the
predominant factor supporting an implementation of the given
phase shut-down controller.

The effluent quality improvement is mainly attributed to the
increased lengths of the anoxic phases, which result in reduced
effluent nitrate concentrations. Similar observations were made
in literature.13 In another study,24 a better effluent quality is
obtained by extension of the aerobic time resulting from ORP-
based control, largely reducing the effluent ammonia concentra-
tions, thus requiring a different bargain between effluent quality
and aeration cost. Contrasting to our study, sufficient denitri-
fication is observed in the reference operation in several
cases.30,31,37 The total cycle lengths of the optimized systems
are not kept constant in these studies so that an increased loading
capacity results. We would expect similar results if for the
studied system only a reduction of the aerobic phase length was
pursued and not an extension of the anoxic phase to keep the
total cycle length constant.

The fact that no effect on the effluent phosphorus concentra-
tion is observed requires some further reflection. It is important

Table 1. p-Values and Z-Scores for the Two-Way Mann-Whitney-U
Test Statistic for Effluent Concentrations of NO3

--N, NO2
--N,

TAN, TN, TP, and COD

pollutant p-value Z-score pollutant p-value Z-score

NO3
--N 0.00018 0.000089 TN 0.0089 0.0045

NO2
--N 0.71 0.64 TP 0.94 0.47

TAN 0.28 0.14 COD 0.057 0.028
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to note that the studied SBR42-44 suffers from nitrogen overload
which, given complete nitrification and incomplete denitrifica-
tion, leads to a high nitrate concentration at the end of the cycle.
This leads to NO3

--N being present at the start of the
subsequent cycle scavenging the volatile fatty acids (VFAs) that
are essential for phosphorus release. If better denitrification
would however occur (e.g., for less challenging influent condi-
tions), more influent VFAs would be available at a start of a
new cycle, leading to a true anaerobic state in which phosphorus
release can occur.44 The released phosphorus can then be
expected to be taken up again in consequent aerobic phases.
Given that the intensified process of phosphorus release and
uptake leads to increased growth of PAOs, it can be expected
that a longer testing period would have led to improved
P-removal. Indeed, very good P-removal was observed for the
same SBR system when N-removal was run over NO2

--N and
much better denitrification performance was achieved.43

To be fair, it must be stated that the success of the applied
strategy shown here is partly thanks to the fact that the modeling
step was performed on data obtained shortly before the actual
implementation of the proposed controller. Indeed, the behavior
of online measurements during the SBR process cycles is not
expected to be quantitatively the same over long periods of time
(e.g., due to changes in the microbial population and/or behavior,
possibly affecting substrate affinities and growth rates); a larger
delay between the modeling and implementation might have
led to less convincing results. The automated updating of the
applied model is therefore considered for future research. To
this end, one may opt for selected batches in which the shut-
down decision (to end the aerobic phase) is delayed or
suppressed as a whole so as to obtain new data reflecting
endogenous respiration at regular intervals. Deactivation of the
shut-down controller may ideally be scheduled when optimiza-
tion is of lesser importance, e.g., when the system is underloaded
or when energy costs are minimal. The model updating itself
may be based on a moving window approach49 or based on
recursive updating of the covariance matrix.50

Conclusions

A controller for online phase length optimization for alternat-
ing systems is proposed and evaluated in an online real-life
experiment. The newly proposed algorithm integrates the
Hotelling’s T2 statistic, commonly used in the field of multi-
variate statistical process monitoring (MVSPC) with a straight-
forward control scheme. The resulting controller is simpler than
the historically proposed multivariate methods and is not affected
by the way the desired state is attained. It was successfully tested
on a pilot-scale sequencing batch reactor (SBR) for nutrient
removal, in particular for optimization of one of its constituting
aerobic phases. A clear proof of concept is given by the effective
shortening of the aerobic phase with 41%. Only marginal effects
were observed for the air supply, by virtue of a PID controller
which already optimizes this aspect of the process. A much
larger impact is observed on the effluent quality of the system,
which is shown to be improved, especially regarding nitrate
nitrogen levels.

It was noted that the underlying assumptions of the applied
statistical test are not generally valid. The use of a rather low
confidence level and the requirement for a series of consecutive
positive tests are two adjustments that minimize the risk of
erroneous switching to the anoxic phase. Future research may
however aim at the construction and use of (statistical) models
that do not violate their underlying assumptions. Also, adaptation
of the model to changing system properties may be necessary.

Importantly, the proposed controller is general in nature and
is not limited to the reported application nor to the phase that
was chosen for optimization. Future applications may therefore
be aimed at the optimization of other phases that are typical
for the studied SBR and other alternating processes. We
underline that effective optimization was possible on the basis
of indirect but reliable measurements, indicating that the method
is applicable while avoiding the installation of complex and
expensive direct sensors for compounds of interest, in casu the
nutrients to be removed. The optimization of anoxic (detection
of the end of denitrification) or anaerobic (detection of the end
of phosphorus release) phases are relevant additional goals when
optimizing cyclic nutrient removing systems. More generally,
the proposed controller allows optimizing any process with
respect to its phase lengths given that the targeted state is
uniquely described by data obtained online.
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