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When several rival mathematical models are proposed for one and the same process, experimental

design techniques are available to design optimal discriminatory experiments. Because these

techniques are model-based, it is important that the model predictions are not too uncertain.

Therefore, model discrimination may become more efficient and effective if this uncertainty is reduced

first. This can be achieved by performing experiments designed to increase the accuracy of the

parameter estimates and, thus, the model predictions. However, performing such an additional

experiment for each rival model may undermine the overall goal of optimal experimental design, which

is to minimize the experimental effort. This paper deals with the design of a so-called compromise

experiment, which is an experiment that is not optimal for each of the rival models, but sufficiently

informative to improve the overall accuracy of the parameters of all rival models. For this purpose, the

problem is approached as a multi-objective optimization problem and the ideal point method is

proposed to design the compromise experiment. This method searches for the experiment that is as

close as possible to the optimal experiments of the individual rival models. The method is applied to a

case study where nine rival models are competing to describe the kinetics of an enzymatic reaction, and

the obtained results show that the ideal method is capable of designing a compromise experiment.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Mathematical models are increasingly used for the design,
optimization and control of sometimes complex processes (e.g., in
Dochain and Vanrolleghem, 2001; Hoffmann et al., 2002; Jiang
et al., 2005; Kitano, 2002; Lee et al., 1999). However, when insight
in a process is insufficient, several hypotheses can be postulated
on how the process actually works. Each of these hypotheses can
subsequently be translated into a unique model structure, and a
set of rival models for the process arises.

Obviously, one is especially interested in the model that
describes the process under study in the most appropriate way. To
identify this model from a set of rival models, it may be necessary
to collect new information about the process, and thus additional
experiments have to be performed. Because the latter is usually
time- and money-consuming, carefully designing these experi-
ments can significantly reduce the required experimental effort.
To achieve model discrimination in a minimal number of
experiments, experimental design methods described in literature
can be used (Buzzi-Ferraris et al., 1984; Chen and Asprey, 2003;
ll rights reserved.

Baets).
Donckels et al., 2009a; Hunter and Reiner, 1965; Vanrolleghem
and Van Daele, 1994).

Common to the experimental design methods is the fact that
they are model-based, which means that potential experiments
are judged in silico based on how the rival models predict their
outcome. In this respect, the importance of the uncertainty on the
model predictions cannot be overstated. Indeed, when this
uncertainty is too large, the expected differences in the model
predictions may not occur after all, which undermines the efficacy
and efficiency of the model discrimination procedure (Burke et al.,
1996, 1997; Buzzi-Ferraris et al., 1984; Chen and Asprey, 2003;
Donckels et al., 2009a; Kremling et al., 2004; Schwaab et al., 2006;
Ternbach et al., 2005).

The uncertainty on the model predictions is indirectly
determined by the quality of the data that is used to estimate
the model parameters. When the data are uninformative with
regard to the model parameters, their estimates will be poor and
the model predictions will be unreliable. Nevertheless, the
classical approach is to deal with the problems of model
discrimination and accurate parameter estimation successively
(Dochain and Vanrolleghem, 2001; Vanrolleghem and Dochain,
1998; Walter and Pronzato, 1997). First, experiments are designed
and performed to choose between the rival model structures,
even when the parameter estimates are inaccurate. Then, once the

www.elsevier.com/locate/ces
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most promising model structure has been selected, experiments
are designed and performed to increase the accuracy of its
parameters (for instance, using the methods described in Baltes
et al., 1994; Munack, 1991; Vanrolleghem and Dochain, 1998;
Walter and Pronzato, 1997).

An interesting variant of this approach has been proposed by
Hill et al. (1968), who introduced a joint criterion that focuses on
both model discrimination and parameter estimation. They state
that an experimental design procedure should emphasize model
discrimination when there is substantial uncertainty as to which
model is the most appropriate one and emphasize parameter
estimation when one of the rival models seems to be over-
whelmingly superior to the others. In other words, a balance
between the two tasks is sought, which is different from simply
following the heuristic: model discrimination first, then precise
parameter estimation. Still, as with the classical approach, the
model discrimination procedure starts with the design of an
optimal discriminatory experiment, while the emphasis gradually
shifts to parameter estimation as experimentation progresses and
discrimination becomes possible.

The discrimination among several rival models may thus
become more effective and efficient if the uncertainty on the
parameter estimates, and consequently on the model predictions,
can be reduced prior to the start of the model discrimination
procedure. This can be achieved by designing and performing
experiments dedicated to increase the accuracy of the parameter
estimates. However, performing an additional experiment for
each rival model may undermine the overall goal of optimal
experimental design, since this would require at least as many
experiments as the number of rival models. Therefore, a so-called
compromise experiment could be designed and performed. Such
an experiment is not optimal for one or more of the individual
rival models, but is sufficiently informative to improve the overall
accuracy of the parameters of all rival models.

The design of a compromise experiment was already studied in
Donckels et al. (2009b), where a kernel-based method was
presented and demonstrated for experimental design exercises
where one is interested in finding the optimal sampling times, and
the work of Dette and Kwiecien (2004), Läuter (1974) who
introduced the term model-robust designs. In this paper, the idea
of designing a compromise experiment is further explored by
treating it as a multi-objective problem. The so-called ideal point
method proposed in this paper can be used for experimental design
problems with experimental degrees of freedom of any type
(manipulations, initial conditions and sampling times), where this
would be difficult with the kernel-based method described in
Donckels et al. (2009b).

The paper is organized as follows. In Section 2, the theory on
parameter estimation and optimal experimental design for
parameter estimation is explained, as well as the ideal point
method to design a compromise experiment. This method is
illustrated on a case study in Section 3, where a number of
models is proposed to describe the kinetics of an enzyme. The
capability of the ideal point method to design a compromise
experiment is evaluated and, where possible, compared to that of
the kernel-based method previously published in Donckels et al.
(2009b). The conclusions drawn from these results are listed in
Section 4.
2. Methods

2.1. Mathematical model representation

In what follows, general deterministic models in the form of a
set of (possibly mixed) differential and algebraic equations are
considered, using the following notations:

_xðtÞ ¼ f ðxðtÞ;uðtÞ;h; tÞ; xðt0Þ ¼ x0; ð1Þ

ŷðtÞ ¼ gðxðtÞÞ; ð2Þ

where xðtÞ is an ns- dimensional vector of time-dependent state
variables, uðtÞ is an nu- dimensional vector of time-varying inputs
to the process, h is an np- dimensional vector of model parameters
taken from a continuous, realizable set H, and ŷðtÞ is an nm-
dimensional vector of measured response variables that are
function of the state variables, xðtÞ. An experiment will be
denoted as n, and is determined by the values of the experimental
degrees of freedom, such as sampling times, initial conditions and
time-varying or constant process inputs (manipulations).

2.2. Parameter estimation

The values of the model parameters, which by definition do
not change during the course of the simulation, have to be
determined from experimental data in a process called parameter
estimation. It consists of minimizing the weighted sum of squared
errors (WSSE) functional through an optimal choice of the
parameters h. This can be written as

ĥ ¼ argmin
hAH

WSSEðhÞ; ð3Þ

where WSSEðhÞ is calculated as

WSSEðhÞ ¼
Xne

k ¼ 1

Xnspk

l ¼ 1

Dŷðnk; h; tlÞ
0
� Q �Dŷðnk; h; tlÞ ð4Þ

and

Dŷðnk; h; tlÞ ¼ yðnk; tlÞ�ŷðnk; h; tlÞ ð5Þ

represents the difference between the vector of the nm measured
response variables and the model predictions at time tl

(l¼ 1; . . . ;nspk
) of experiment nk (k¼ 1; . . . ;ne). Further, ne repre-

sents the number of experiments from which data are used to
estimate the model parameters, nspk

represents the number of
sampling times in experiment nk, which are assumed to be the
same for all measured state variables, and Q is an nm-
dimensional square matrix of user-supplied weighing coefficients.
Typically, a Gaussian distribution is assumed for the measure-
ment errors, and Q is chosen as the inverse of the measurement
error covariance matrix R to incorporate the measurement
uncertainty in the WSSE (Marsili-Libelli et al., 2003; Omlin and
Reichert, 1999; Vanrolleghem and Dochain, 1998).

2.3. Optimal experimental design for parameter estimation

In this section, the methodology used to design experiments to
obtain more accurate parameter estimates, often called optimal
experimental design for parameter estimation (OED/PE), is briefly
described.

2.3.1. Fisher information matrix

As stated before, the accuracy of the parameter estimates
highly depends on the quality or the information content of the
experimental data from which they are determined. The informa-
tion content of ne experiments, n1; . . . ; nne

, with regard to the
model parameters is represented by the so-called Fisher informa-
tion matrix (FIM) (Goodwin and Payne, 1977; Ljung, 1999; Mehra,
1974; Munack, 1991; Vanrolleghem and Dochain, 1998; Walter
and Pronzato, 1997), which is calculated as

FIMðn1; . . . ; nne
; ĥÞ ¼

Xne

k ¼ 1

FIMðnk; ĥÞ; ð6Þ
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Fig. 1. Illustration of the D-optimality design criterion that causes the volume of

the confidence region to decrease.
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where

FIMðnk; ĥÞ ¼
Xnspk

l ¼ 1

@ŷ

@h
ðnk;h; tlÞ

����
ĥ

� �0
� Rðnk; tlÞ

�1
�
@ŷ

@h
ðnk;h; tlÞ

����
ĥ

� �
: ð7Þ

A closer look at Eq. (7) shows that the FIM is composed of two
components, the parameter sensitivities (@ŷ=@h) and the mea-
surement error covariance matrix (R). The parameter sensitivity
with respect to a certain state variable expresses how much that
state variable will change when a parameter is slightly perturbed.
A state variable that is highly sensitive to a certain parameter will
therefore contain a lot of information about this parameter, while
a variable that is insensitive to the parameter does not contribute
to the information content for that parameter. The role of the
measurement error covariance matrix in the calculation of the
FIM is rather straightforward, since it is obvious that a measure-
ment associated with a large measurement error will contribute
less to the information content than a measurement with a small
measurement error.

2.3.2. Central rationale behind optimal experimental design for

parameter estimation

In general, optimal experimental design is an optimization
problem, where the optimum of a well-defined objective function
is sought by varying the experimental degrees of freedom. The
experimental degrees of freedom, n, are restricted by a number of
constraints that define a set of possible experiments, denoted as
N. These constraints are determined by the experimental setup
and are specified before the start of the experimental design
exercise.

The Fisher information matrix described in the previous section
expresses the information content of the ne experiments with regard
to the model parameters, and its maximization is the central
rationale behind optimal experimental design for parameter
estimation (Asprey and Macchietto, 2000; Goodwin and Payne,
1977; Ljung, 1999; Mehra, 1974; Munack, 1991; Shirt et al., 1994;
Vanrolleghem and Dochain, 1998; Walter and Pronzato, 1997). The
ðneþ1Þ th experiment, denoted as n%

neþ1, is obtained as

n%

neþ1 ¼ argmax
nAN

gðFIMðn1; . . . ; nne þ1; ĥne ÞÞ; ð8Þ

with

FIMðn1; . . . ; nneþ1; ĥne Þ ¼
Xne

k ¼ 1

FIMðnk; ĥne ÞþFIMðnne þ1; ĥne Þ: ð9Þ

The information content of the proposed ðneþ1Þ th experi-
ment, which is represented by a scalar function (g) of the
FIMðnne þ1; ĥne Þ, is thus maximized (see Section 2.3.3), given the
information content of the already performed experiments
ðFIMðn1; . . . ; nne

; ĥne ÞÞ and the parameter values derived from these
experiments ðĥne Þ. For simplicity, FIMðn1; . . . ; nneþ1; ĥne Þ will be
denoted as FIM in the following.

2.3.3. Experimental design criteria based on the FIM
Since the FIM is a matrix, it cannot be maximized as such.

Therefore, several design criteria/objective functions have been
proposed based on the FIM (Atkinson and Donev, 1992; Munack,
1991; Petersen, 2000; Vanrolleghem and Dochain, 1998), all of
which exploit the inversely proportional relationship between the
FIM and the parameter estimation error covariance matrix. This
relationship is dictated by the Cramér–Rao inequality (Ljung, 1999;
Walter and Pronzato, 1997), which states that under certain
conditions (that is, uncorrelated white measurement noise), the
inverse of the FIM gives a lower bound of the parameter estimation
error covariance matrix. In this way, properties of the FIM determine
the size, shape and orientation of the confidence region of the
parameter estimates, and thus their accuracy.
In this paper, only the so-called D-optimality design criterion
will be discussed and applied. With this criterion, the determinant
of the FIM is maximized. The latter is inversely proportional to the
volume of the confidence region of the parameter estimates, and
this volume is thus minimized when maximizing detðFIMÞ. In
other words, one minimizes the geometric average of the
variances of the parameter estimates. In this respect, it is
important to be aware of the fact that the value of the
D-optimality design criterion scales with the number of model
parameters (Atkinson and Donev, 1992; Ljung, 1999; Walter and
Pronzato, 1997). Moreover, D-optimal experiments possess the
property of being invariant with respect to any rescaling of the
parameters (Petersen, 2000; Seber and Wild, 1989).

The effect of this criterion on the confidence region is
illustrated in Fig. 1 for an estimation problem with two
parameters (y1 and y2). The size, shape and orientation of the
confidence region, which is an ellipse in the case of two
parameters, are determined by the eigenvalues and eigenvectors
of the FIM. The largest axis of the confidence ellipse is inversely
proportional to the square root of the smallest eigenvalue (lmin),
while the smallest axis is inversely proportional to the square root
of the largest eigenvalue (lmax).

2.4. Design of a compromise experiment

This paper investigates the possibility to design a compromise
experiment, that is, an experiment which may not be optimal for
each individual rival model, but sufficiently informative to
improve the overall accuracy of the parameters of all rival models.
As stated in the Introduction, this problem was already tackled for
the case where only the sampling times are to be optimized
(Donckels et al., 2009b). The basic idea of the kernel-based
method presented there is briefly discussed in Section 2.4.1, and is
illustrated in Fig. 2.

2.4.1. Description of the kernel-based method (Donckels et al.,

2009b)

The kernel-based method starts with the determination of the
optimal sampling times for the individual models (black and gray
dots in Fig. 2). Then, these sampling times are collected on one
time axis, and Gaussian-like kernel functions (denoted as k) are
imposed on each sampling time (dashed lines). The sum of these
kernel functions (full line), given by

p̂ðtÞ ¼
Xm

i ¼ 1

Xnsp

j ¼ 1

wij � k
t�tij

h

� �
ð10Þ

is used to determine the compromise sampling times (as
illustrated in Fig. 2). In Eq. (10), tij represents the j th sampling
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Fig. 3. Feasible design space (X) and feasible criterion space (Z) for a hypothetical

multi-objective problem with two design variables (x1 and x2) where the aim is to

simultaneously minimize two objective functions (f1 and f2). In addition, the

Pareto-optimal front (P) and the ideal point (f 3) are shown.

Fig. 2. The black dots represent the optimal sampling times for model i, whereas

the gray ones represent those for model j. The compromise sampling times

(location is indicated by the white dots) are those that maximize p̂ðtÞ (represented

by the full line) under the constraint that a minimum time between two sampling

times is required.
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time that was found to be optimal for model i, h represents the
so-called smoothing parameter, and wij represents the weight of
the j th sampling time of the optimal experiment for model i (tij).
The latter represent the contribution of the individual samples to
the information content of the experiment. The kernel function is
given by

k
t�tij

h

� �
¼ e�ððt�tijÞ=hÞ2 : ð11Þ

The fact that sampling times that are close to each other
enforce each other (for instance, for the sampling times on the left
in Fig. 2) agrees with the rationale that the compromise sampling
times are located in regions that are interesting for several rival
models. For more details about this method the reader is referred
to Donckels et al. (2009b).

As stated before, this method focusses on finding compromise
sampling times, and extending the method for cases where all
types of experimental degrees of freedom (manipulations, initial
conditions and sampling times) are considered, appears to be
rather complicated. For instance, the method requires the choice
of a so-called smoothing parameter which determines the width
of the kernel functions. For the case where only sampling times
were optimized, this smoothing parameter could be linked to and
calculated from the required minimum time interval between two
measurements, which is dictated by the experimental setup. For
other experimental degrees of freedom, such as the initial
conditions of certain process variables or the timing of a pulse,
such an approach is not straightforward, which makes it difficult
to choose this smoothing parameter in an objective manner.

Therefore, an alternative method is presented in this paper,
that is able to cope with experimental design problems where
experimental degrees of freedom of all types are considered. Since
the optimal experiment for model mi may not be optimal for
model mj, the experimental design problem can be seen as a
multi-objective problem, where the aim is to systematically and
simultaneously optimize (that is, maximize or minimize) a
number of possibly conflicting objectives, each of which is
translated into an objective function. Without loss of generality,
it is assumed in the following that the aim of the optimization
exercise is to minimize these objective functions.

2.4.2. Multi-objective optimization problems

A general multi-objective optimization problem is posed as
(Deb, 2001; Marler and Arora, 2004)

min
xAX

FðxÞ � ½f1ðxÞ; f2ðxÞ; . . . ; fdðxÞ�
0; ð12Þ

where x¼ ½x1; x2; . . . ; xq�
0AX represents the q-dimensional design

or decision vector, X represents the feasible design or decision
space, and FðxÞ represents the d-dimensional vector containing
the individual objective function values fiðxÞ. The feasible criterion
space, denoted as Z, is defined as the set fFðxÞjxAXg (Deb, 2001;
Marler and Arora, 2004).

In this respect, it is important to realize that each point in the
design space maps to a point in the criterion space (see Fig. 3), but
the reverse may not be true. For instance, in general, there does
not exist a vector x for which each objective function is minimal.
The point in criterion space that is formed by the individual
minima of the different objective functions is called the ideal
point (Deb, 2001), denoted as f 3 and defined as follows:

f 3 ¼ min
xAX

f1ðxÞ;min
xAX

f2ðxÞ; . . . ;min
xAX

fdðxÞ�
0:

�
ð13Þ

In an experimental design context, x represents an experiment,
denoted as n, and X represents the set of all possible experiments,
denoted as N. The objective functions correspond to the
D-optimality design criteria associated with each of the rival
models. So, the number of objective functions equals the number
of rival models. Note that also other design criteria, which were
not described in this paper, could have been used (e.g., A-optimality,
modE-optimality, or even the cost of an experiment). For more
information on these design criteria, the reader is referred to
Atkinson and Donev (1992), Munack (1991), Petersen (2000), and
Vanrolleghem and Dochain (1998).

2.4.3. Solving multi-objective optimization problems

In contrast to single-objective optimization, a solution to a
multi-objective problem is more a concept than a definition. In
the case of conflicting objective functions, the resulting multi-
objective optimization problem gives rise to a set of points that all
fit a predetermined definition of an optimum (Deb, 2001). The
predominant concept in defining an optimal point is that of
Pareto-optimality, which is defined as follows:

Definition 2.1. A point, x%AX, is Pareto-optimal if there does not
exist another point, xAX, such that f ðxÞrf ðx%Þ, and fiðxÞo fiðx

%Þ

for at least one objective function.

In words, a point is Pareto-optimal if there is no other point that
improves at least one objective function without worsening
another objective function. The set of all Pareto-optimal is known
as the Pareto-front, denoted as P and shown in Fig. 3. Each point
located on this front may thus in a sense be considered as optimal.
In practice, one or some of the Pareto-optimal points will
eventually be selected by the decision maker.

However, although several optimization algorithms are de-
scribed in literature to determine the Pareto front (Deb, 2001), it
often appears to be a difficult and computationally demanding
task (Deb, 2001; Goel et al., 2007). This is especially true for the
optimal experimental design applications focussed on in this
paper, where the evaluation of an experiment proposed by the
optimization algorithm involves several model simulations. In
addition, the problem of finding the Pareto front may become
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Fig. 4. Illustration of the ideal point (f 3) method for a hypothetical multi-objective

problem with two design variables (x1 and x2), where the aim is to simultaneously

minimize two objective functions (f1 and f2) and where the ‘1 distance function is

used.

Fig. 5. Illustration of the ideal point (f 3) method for a hypothetical multi-objective

problem with two design variables (x1 and x2), where the aim is to simultaneously

minimize two objective functions (f1 and f2) and where the ‘2 distance function is

used.

Fig. 6. Illustration of the ideal point (f 3) method for a hypothetical multi-objective

problem with two design variables (x1 and x2), where the aim is to simultaneously

minimize two objective functions (f1 and f2) and where the ‘1 distance function is

used.
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prohibitively complex as the number of objectives increases, and
visualizing the Pareto front is difficult for problems with more
than three dimensions. The latter is important because the Pareto
front will eventually be used as a reference by the decision maker/
experimenter, who has to choose which experiment will be
performed.

2.4.4. The ideal point method

To overcome the issues raised above, multi-objective problems
are often translated into single-objective problems. The latter
approach is also proposed in this paper, where the optimal
solution is defined as the point that is as close as possible to the
ideal point (defined above), and for which all individual objective
functions are thus as close as possible to their corresponding
minima (Deb, 2001; Marler and Arora, 2004). The presented
method is often called the ideal point method (Deb, 2001), and
this terminology will be used in the following.

To define closeness, different mathematical measures of
distance can be used, such as the ‘p distance function (or
Minkowski distance function) (Deb, 2001). The ‘p distance of
any point in criterion space x from the ideal point f 3 can be
calculated as

‘pðxÞ ¼
Xd

i ¼ 1

jfiðxÞ�f 3i j
p

 !1=p

; ð14Þ

where p can take any value between 1 and þ1. In this paper, only
the ‘1, the ‘2 and the ‘1 distance functions are considered.

When the ‘1 distance function (p¼ 1) is used, the multi-
objective problem reduces to a single-objective problem where
the different objective functions are simply summed. Note that
this ‘1 distance function is also known as the taxicab distance or
the Manhattan distance. When the ‘2 distance function (p¼ 2) is
used, the Euclidean distance between the ideal point and any
point in criterion space is minimized. For larger values of p, the
largest term of Eq. (14) will dominate the value of ‘pðxÞ more and
more, and the distance function associated with p¼ þ1 (also
called the Chebyshev distance function) eventually becomes

‘1ðxÞ ¼ max
i ¼ 1;...;d

jfiðxÞ�f 3i j: ð15Þ

The multi-objective problem thus reduces to a problem where
the maximal deviation from the ideal point is minimized. The
working principle of the ideal point method for each of these
three distance functions discussed above is shown in Figs. 4, 5
and 6, respectively.

In an experimental design context, the ideal point is defined by
the optimal experiments for the individual models. When the
D-optimality design criterion is used (which corresponds to
gðFIMÞ ¼ detðFIMÞ in Eq. (8)), the compromise experiment,
denoted as nc , is found and defined as follows:

nc ¼ argmin
nAN

Xm

i ¼ 1

jDðmi; n
%

i Þ�Dðmi; nÞj
p

 !1=p

: ð16Þ

Here, m represents the number of rival models, Dðmi; nÞ

represents the value of the D-optimality design criterion for
model mi associated with experiment n, Dðmi; n

%

i Þ represents the
D-optimality design criterion value for model mi associated with
its corresponding D-optimal experiment (n%

i ), and p is equal to 1, 2
or þ1.

2.4.5. A note on model-robust designs

As mentioned in the Introduction of this paper, this problem
was already tackled by Dette and Kwiecien (2004), who
introduced the term model-robust designs. Their approach was
developed for and evaluated using nested polynomial regression
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models that are linear in the model parameters. In their approach,
the overall information content of the experiment with regard to
the parameters of the rival models is evaluated using the
geometric mean of the D-optimality design criterion values
associated with the different models. So, following their rationale
and using the notations introduced above, the model-robust
design (or the compromise experiment) would be found after
solving (Eq. (17)):

nc ¼ argmax
nAN

Ym
i ¼ 1

Dðmi;nÞ
li=npi ; ð17Þ

where m represents the number of rival models and the quantities
li represent non-negative weights (with

Pd
i ¼ 1 li ¼ 1) reflecting

the experimeter’s prior belief in the adequacy of rival model mi.
An interesting feature of this approach is that the D-optimality
design criterion values are scaled to account for the difference in
the number of model parameters. Indeed, as explained in Section
2.3.3, the D-optimality design criterion is proportional to the
volume of the confidence region of the parameter estimates and it
is intuitively clear that the addition of an additional model
parameter (or dimension) leads to a larger design criterion value.
Although the possibility to account for this was not included in
the ideal point method described in Section 2.4.4, modifying the
ideal point method accordingly is straightforward and would be a
very useful extension of the method.

2.5. Evaluating the capability to design a compromise experiment

Evaluating the presented method for its capability to design a
compromise experiment is not a trivial task. The most intuitive
approach would be to perform the compromise experiment as
well as the optimal experiments, and compare the accuracy of the
parameter estimates obtained after re-estimating them from each
of the experiments. However, as discussed in Donckels et al.
(2009b), this may give a biased picture of the method’s
performance when the models are nonlinear (which is for
instance the case in the case study described below). If this is
the case, the values of the design criteria depend on the parameter
estimates (Atkinson and Donev, 1992; Ljung, 1999; Vanrolleghem
and Van Daele, 1994; Vanrolleghem and Dochain, 1998; Walter
and Pronzato, 1997), and these may change after performing the
designed experiments and re-estimating the parameters. Note
that this issue is inherent to optimal experimental design for
nonlinear models, and is not restricted to the design of
compromise experiments.

To evaluate the presented method on its capability to design a
compromise experiment, the approach described in Donckels
et al. (2009b) was also used here. Because the information content
of an experiment is reflected by the value of the design criterion,
the basis of the evaluation lies in the comparison of these criterion
values. Since the ideal point method requires the design of an
optimal experiment for each model, each of these optimal
experiments can be performed instead of the compromise
experiment. The information that is lost or gained when doing
so is used for the evaluation. Note that, in this respect, it is
important to realize that the information content or the quality of
an experiment with regard to the parameters of a particular
model can be compared to that of another experiment, but it is
not meaningful to compare design criterion values from different
models.

The information content of an experiment (n) with regard to
the parameters of model mi is represented by the corresponding
D-optimality criterion value, denoted as Dðmi; nÞ. These criterion
values are calculated for each of the D-optimal experiments (n%

j ,
with j¼ 1; . . . ;m), and are compared to the criterion value
associated with the compromise experiment (nc). The ratio
between these criterion values, denoted as GDij

, is eventually
used for the evaluation, and is calculated as

GDij
¼

Dðmi; ncÞ

Dðmi; n
%

j Þ
: ð18Þ

Since a higher information content is represented by a higher
value of the D-optimality design criterion, it holds that GDij

41
when the compromise experiment contains more information
with regard to the parameters of model mi than the optimal
experiment for model mj (n%

j ). In other words, when GDij
41, the

estimates of the parameters of model mi should be more accurate
when the compromise experiment is performed instead of
experiment n%

j .

2.6. Optimization algorithms

Both parameter estimation and optimal experimental design
are optimization problems. To find the optimum, the use of
optimization algorithms is required. In this work, the SIMPSA
optimization algorithm proposed by Cardoso et al. (1996) was
used. This algorithm combines the nonlinear simplex (Nelder and
Mead, 1965) and the simulated annealing algorithm (Kirkpatrick
et al., 1983). For more information on these optimization
algorithms, the reader is referred to the cited papers.
3. Results and discussion

In this section, the experimental design concepts introduced in
the previous section will be illustrated in a relatively simple case
study, where nine models are proposed to describe the kinetic
behavior of the enzyme glucokinase (glk, EC: 2.7.1.2). This enzyme
catalyzes the conversion of glucose ðGLUÞ and ATP to glucose-6-
phosphate ðG6PÞ and ADP, which is the first reaction of the
glycolysis pathway.

In this case study, a compromise experiment will be designed
for three scenarios: optimization of the sampling times, optimiza-
tion of the initial conditions of the experiment, and optimization
of both the sampling times and the initial conditions. With these
examples, a number of research questions are addressed. First of
all, the case study should demonstrate the capability or incap-
ability of the ideal point method to design compromise experi-
ments. In addition, it should indicate whether the choice of the
distance function (‘1, ‘2 and ‘1) matters, and, if so, which of these
metrics is preferred. Finally, it would be interesting to compare
the performance of the ideal point method to that of the kernel-
based method presented in Donckels et al. (2009b), where
possible.

3.1. General model

Before describing the different kinetics, a general model for the
enzymatic conversion process is formulated. For this, it is
assumed that the experimental setup allows one to give a pulse
of glucose, ATP and PEP, or a mixture thereof.

The volume of the reaction vessel, denoted as V½L�, is
determined by the flow rate of the pulse, denoted as Fp ½L=s�,
and by the sampling volume and frequency. However, in this
example, the sampling volume will be neglected and the volume
can thus be described by

dV

dt
¼ Fp: ð19Þ

For the concentration of glucokinase, denoted as GLK ½mg=L�,
only a dilution effect is considered, and inactivation of the enzyme
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is thus neglected. Given the fact that a typical experiment ends
after 20 min, this is a reasonable assumption. The resulting
equation for describing the enzyme concentration is given as

dGLK

dt
¼�

Fp

V
� GLK: ð20Þ

The equations used to describe the other state variables (all of
which are expressed in mM) are given as

dGLU

dt
¼

Fp

V
� ðGLUp�GLUÞ�vglk; ð21Þ

dATP

dt
¼

Fp

V
� ðATPp�ATPÞ�vglk; ð22Þ

dG6P

dt
¼�

Fp

V
� G6Pþvglk; ð23Þ

dADP

dt
¼�

Fp

V
� ADPþvglk; ð24Þ

dPEP

dt
¼

Fp

V
� ðPEPp�PEPÞ: ð25Þ

Here, GLUp, ATPp and PEPp represent the concentrations ½mM� of
glucose, ATP and PEP in the pulse, respectively, and vglk represents
the velocity equation describing the kinetic behavior of glucoki-
nase ½mM=s�.

3.2. Rival models

The conversion catalyzed by glucokinase is a bi-reactant
system (Segel, 1975). Two reaction mechanisms are possible for
such a system: random and ordered. In a random bi-reactant
system, the order in which the two substrates bind does not
matter, whereas in an ordered bi-reactant system one of the
substrates has to bind to the enzyme first, before the second
substrate can bind and the reaction can take place. In addition, it
was recently suggested that glucokinase may be inhibited by
phosphoenolpyruvate (PEP) (Ogawa et al., 2007).

Based on these considerations, nine models were defined to
describe the enzyme kinetics (Segel, 1975). The models differ in
the equation used to describe the enzyme kinetics, each of which
is based on a particular hypothesis of how the enzyme works.
Although the kinetic equation is different for each rival model,
each one is of the following form:

vglk ¼ k � GLK �

GLU

KGLU
�

ATP

KATP

jiðGLU;ATP;PEPÞ
; ð26Þ

where the parameter k expresses the maximum specific reaction
rate ½U=mg�, where one unit is defined as that amount of enzyme
that catalyzes one mmol of substrate in 1 min. The part that is
different for each rival model mi is represented by
jiðGLU;ATP;PEPÞ.

For models m1, m2 and m3, it is assumed that the reaction
mechanism is random. With regard to the inhibition by PEP, three
scenarios are possible (also for the other models described further
on): there is no inhibition by PEP (Eq. (27)), PEP inhibits the
binding of ATP (Eq. (28)) and PEP inhibits the binding of glucose
(Eq. (29)). This results in the following equations:

j1ðGLU;ATP;PEPÞ ¼ 1þ
GLU

KGLU
þ

ATP

KATP
þ

GLU

KGLU
�

ATP

KATP
; ð27Þ

j2ðGLU;ATP;PEPÞ ¼ 1þ
GLU

KGLU
þ

ATP

KATP
þ

PEP

KPEP
þ

GLU

KGLU
�

PEP

KPEP
þ

GLU

KGLU
�

ATP

KATP
;

ð28Þ
j3ðGLU;ATP;PEPÞ ¼ 1þ
GLU

KGLU
þ

ATP

KATP
þ

PEP

KPEP
þ

ATP

KATP
�

PEP

KPEP
þ

GLU

KGLU
�

ATP

KATP
:

ð29Þ

For the other six models, an ordered reaction mechanism is
assumed. For models m4, m5 and m6, it is assumed that glucose is
the first binding substrate, which results in the following
equations:

j4ðGLU;ATP;PEPÞ ¼ 1þ
GLU

KGLU
þ

GLU

KGLU
�

ATP

KATP
; ð30Þ

j5ðGLU;ATP;PEPÞ ¼ 1þ
GLU

KGLU
þ

GLU

KGLU
�

PEP

KPEP
þ

GLU

KGLU
�

ATP

KATP
; ð31Þ

j6ðGLU;ATP;PEPÞ ¼ 1þ
GLU

KGLU
þ

ATP

KATP
�

PEP

KPEP
þ

GLU

KGLU
�

ATP

KATP
: ð32Þ

The equations associated with models m7, m8 and m9 are
similar, but ATP is assumed to be the first binding substrate. The
equations for the corresponding models are

j7ðGLU;ATP;PEPÞ ¼ 1þ
ATP

KATP
þ

GLU

KGLU
�

ATP

KATP
; ð33Þ

j8ðGLU;ATP;PEPÞ ¼ 1þ
ATP

KATP
þ

GLU

KGLU
�

PEP

KPEP
þ

GLU

KGLU
�

ATP

KATP
; ð34Þ

j9ðGLU;ATP;PEPÞ ¼ 1þ
ATP

KATP
þ

ATP

KATP
�

PEP

KPEP
þ

GLU

KGLU
�

ATP

KATP
: ð35Þ

3.3. Real model and data generation

According to literature (Monasterio and Cárdenas, 2003;
Ogawa et al., 2007), the reaction mechanism of glucokinase is
ordered, with glucose as first binding substrate, and PEP inhibiting
the binding of ATP to the enzyme. Based on these considerations,
the fifth model was chosen as the real or true model ðm%

5Þ. This
model was used to generate experimental data by simulating the
experiment using the parameter values tabulated in Table 1, and
by adding random noise to mimic the measurement error. The
standard deviations of the measurements were calculated in the
same way as suggested by Ternbach et al. (2005):

sy ¼ ŷ � By � 1þ
1

ŷ

lby

� �2

þ
ŷ

lby

0
BBB@

1
CCCA: ð36Þ

Here, By represents a constant minimal relative error, and lby

represents the lower accuracy bound on the measurement of y. In
this way, the standard deviation of the measurements is
proportional to the value of ŷ, but increases when the latter
approaches the lower accuracy bound on the measurement. Note
that these sy- values are used to construct the measurement error
covariance matrix, denoted as R (see Section 2.2), which is
assumed here to be a diagonal matrix. As the diagonal elements of
this matrix represent the variances of the measurements, they can
be calculated as s2

y .

3.4. Preliminary experiment

To initiate the case study, a preliminary experiment was defined
and performed in silico. For this experiment, the volume of the
reaction vessel was set to 10 mL, and the initial glucokinase
concentration was set such that 5 units were present in the reaction
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Table 1
Parameters of the real model (m%

5) that were used to generate experimental data, the parameter estimates obtained after fitting the rival models to the data from the

preliminary experiment, as well as the corresponding 95% confidence intervals and WSSE- values.

model k KGLU KATP KPEP WSSE

m%

5 312 0.15 0.13 0.10 –

m1 314:13790:48 0:017370:1135 0:140770:0694 – 61.5287

m2 336:147107:66 0:045170:1341 0:153370:0772 0:146670:2198 57.1080

m3 317:21793:38 0:019170:1162 0:141270:0705 0:009170:0544 56.9125

m4 307:64749:17 0:129970:8481 0:124570:0441 – 61.2821

m5 312:41751:28 0:201170:9320 0:120770:0461 0:126170:2145 56.9285

m6 319:87755:23 0:311271:0616 0:118270:0491 0:107670:3577 57.1491

m7 412:587180:30 0:009970:1706 27:96037464:53 – 94.2223

m8 428:117236:59 0:014870:2146 19:40477265:68 8:74587127:33 77.5805

m9 543:607438:34 0:110270:3893 3:681279:2598 0:012770:0327 88.2185
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Fig. 7. Preliminary experiment simulated with the real model (m%

5) (- -), and the experimental data (�) obtained from it.
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mixture. Further, it was assumed that no G6P, ADP and PEP were
present at the start of the experiment, and the initial concentrations
of glucose and ATP were set to 1.5 and 0.5 mM, respectively.

During the experiment, two pulses were given, for both of
which the volume was equal to 1 mL. The first pulse was given
5 min after the start of the experiment, and only contained ATP.
The ATP concentration was chosen such that the ATP concentra-
tion in the reaction mixture was raised to 1.5 mM. The second
pulse, given 10 min after the start of the experiment, contained
glucose and PEP, and their concentrations were chosen such that
the resulting concentrations in the reaction mixture were 1.5 and
0.1 mM, respectively.

The experiment was stopped after 20 min, and 10 measure-
ments of GLU, ATP, G6P and ADP were taken in duplicate (see
Fig. 7). The minimal relative errors (B) were arbitrarily set to 0.05
for all measured state variables, and the lower accuracy bounds
on the measurements were defined as 0.1 mM.

3.5. Parameter estimation

The parameters of all rival models were estimated using the
data from this preliminary experiment (Fig. 7), and using the
optimization algorithm described in Section 2.6. Since negative
parameter values do not make sense, the lower bounds were set
to zero. The upper bounds were set to 1000 U/mg for parameter k,
2 mM for parameter KGLU , 50 mM for parameter KATP , and 25 mM
for parameter KPEP . The results of this parameter estimation
exercise are shown in Table 1. From these results, one can
conclude that the accuracy of the parameter estimates is quite
low, indicating that it may be beneficial to perform a compromise
experiment to increase the accuracy of the parameter estimates
prior to the start of the model discrimination procedure.

3.6. Optimization of sampling times

This section describes the results for the scenario in which 10
sampling times were optimized. The initial concentrations and the
characteristics of the two pulses that are given during the course of
the experiment are fixed to the ones of the preliminary experiment.
Further, it is assumed that a minimum time interval of 15 s is
required by the experimental setup between two subsequent
sampling times. To clearly illustrate the different steps of the ideal
point method, the results of this scenario will be discussed in more
detail than the ones for the other scenarios. In addition, they will be
compared to those presented in Donckels et al. (2009b), where a
kernel-based method was applied to the same case study.
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The compromise experiment is found after minimizing the
distance between the ideal point and the point in criterion space
that corresponds with the experiment being proposed by the
optimization algorithm (as explained in Section 2.4.3). Obviously,
the ideal point has to be determined first. For this purpose, an
experiment is designed for each of the rival models by optimizing
the D-optimality design criterion (Eq. (13)). The results of these
(nine) experimental design exercises are shown in Fig. 8.

Once the ideal point is determined, the compromise experi-
ment is found by applying the optimization algorithm described
in Section 2.6 to solve the optimization problem formalized in
Eq. (16). This optimization exercise is done for each of the three
distance functions described earlier (‘1, ‘2 and ‘1). The resulting
compromise sampling times are shown in Fig. 9 as well as the
compromise sampling times found using the kernel-based
method (Donckels et al., 2009b). From these results, one can see
that, except for the ‘1 distance function, the compromise
sampling times are similar for the different methods.

To evaluate the capability of the presented method to design a
compromise experiment, the approach outlined in Section 2.5 is
adopted. For this purpose, the GDi1

- values are calculated from
Eq. (18) and presented as a barplot (see Fig. 10). For each model
mi, the value of GDi1

is represented by the black bar (n%

1), and the
m1

m2

m3

m4

m5

m6

m7

m8

m9

0 2 4 6 8
time

m1...m9

Fig. 8. Optimal sampling times (�) found for the nine rival models for the case where th

graph at the bottom was obtained by plotting the 10 optimal sampling times of the ni
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t

optimal

kernel−based

ideal point (l1)

ideal point (l2)

ideal point (l∞)

Fig. 9. Optimal sampling times for the individual models (�) and the compromise sam

using the different distance functions (‘1, ‘2 and ‘1).
bars become increasingly white as the model number increases
(n%

1-n%

9). When GDij
41, the estimates of the parameters of model

mi should be more accurate when the compromise experiment is
performed instead of experiment n%

j . To present the results in a
systematic and easily interpretable form, the values of GDij

are
represented on a logarithmic scale. In this way, it is easy to see
when GDij

41.
For brevity, the results of this evaluation will only be discussed

in detail for the case where the ‘2 distance function was used. The
results are shown in Fig. 10, and clearly illustrate the ability of the
presented method to design an experiment with the character-
istics of a compromise experiment. For instance, the GDi1

- values
for model m1 show that GD1j

o1 for experiments n%

1, n%

3 and n%

4,
which indicates that these experiments contain more information
with regard to the parameters of model m1 than the compromise
experiment. For the other optimal experiments, this is not the
case and the compromise experiment is preferred. If one would
perform n%

4 instead of the compromise experiment, the informa-
tion content would indeed be higher for model m1, but it would
be lower for the other models (except for model m4, of course).
The latter can be seen when comparing the bars corresponding to
n%

4 for the different models. That the compromise experiment is
not optimal for the individual models is a direct result of the fact
10 12 14 16 18 20
 (min)

e D-optimality design criterion was optimized by varying the sampling times. The

ne individual models on the same axis.

10 12 14 16 18 20
ime (min)

pling times (3) found using the kernel-based method, and the ideal point method
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that the optimal sampling times are different for the individual
models (see Fig. 8). Yet, the compromise experiment seems to be
sufficiently informative to improve the overall accuracy of the
parameter estimates.

Another interesting observation can be made from the results
for the parameters of models m7, m8 and m9. Apparently, each of
the D-optimal experiments of the other models is significantly
less informative with regard to their parameters compared to the
compromise experiment, which performs quite well. This in-
dicates that one or more compromise sampling times that are not
present in the D-optimal experiments contain a lot of information
on the parameters of those models. Indeed, from Fig. 8 one can see
that the D-optimal experiments for models m7, m8 and m9 have
one or two sampling times around 0.5 min, while this is not the
case for models m1 till m6. Because one of the compromise
sampling times is located in this time range (as shown in Fig. 9),
the compromise experiment performs significantly better for
these models (m7, m8 and m9) than the D-optimal experiments
from the other models. In addition, one can see that the D-optimal
experiments for models m7 and m9 have two sampling times at
about 0.5 min, while the D-optimal experiment for model m8 and
the compromise experiment have only one. This explains why this
phenomenon is less pronounced for models m7 and m9.

To evaluate the results obtained with the other distance
functions, the values of GDij

were calculated as well, but to
facilitate the comparison between the distance functions, these
values are presented in one figure using boxplots (Fig. 11). On
each box, the central mark represents the median, the edges of the
box represent the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers, and
outliers are plotted individually (the crosses). By presenting
the GDij

- values in this way, information is lost on which of the
D-optimal experiments performs better or worse than the
compromise experiment for the individual models, but this
information is not essential for this purpose. In fact, the median
is of great importance. If the median is above one, it indicates that
the compromise experiment performs better than the majority of
the D-optimal experiments.
That it is possible to design a compromise experiment using
the ‘2 distance function can of course be concluded from these
boxplots as well. This is especially clear from the medians
(indicated by the horizontal lines in the box) which are always
larger than one, but also from the fact that a larger part of the box
is above this level. So, for each of the rival models, the
compromise experiment performs better than the majority of
the D-optimal experiments, which is in accordance with the
required characteristics of a compromise experiment.

From Fig. 11, one can also observe that the results obtained
with the ‘1 distance function are very similar to the ones obtained
with the ‘2 distance function, which is not surprising given the
fact that the compromise sampling times are nearly identical
(Fig. 8). Indeed, situations can occur where the Pareto front is such
that the solutions obtained with the different distance functions
are the same. Although this is not the case for the hypothetical
Pareto front shown in Figs. 4, 5 and 6, it would for instance be the
case when the Pareto front looks like the one shown in Fig. 3.

For the ‘1 distance function, the compromise sampling times
are slightly different. This is also reflected in the values of GDij

,
from which one can conclude that the majority of the D-optimal
experiments perform slightly better than the designed compro-
mise experiment for models m1 to m6. For models m7, m8 and m9,
which are the models where ATP is the first binding substrate and
for which the model structures resemble each other, this is not
the case. This suggests that for this example the ‘1 distance
function may not be the most suitable one to design a
compromise experiment.

For illustratory purposes, the parameter estimates and the
uncertainty thereon obtained after performing the individual D-
optimal experiments and the compromise experiment (obtained
using the ‘2 distance function) are shown in Table 2. Note that
these parameter estimates were obtained after re-estimating the
model parameters using the newly collected experimental data.

To conclude this section, the results obtained using the ideal
point method are compared to the ones obtained with the kernel-
based method presented in Donckels et al. (2009b) and briefly
described in Section 2.4.1. Although the compromise sampling
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Table 2
Parameters of the real model (m%

5) that were used to generate experimental data, and the parameter estimates obtained after fitting model m5 to the data from both the

preliminary experiment (denoted here as np) and the individual D-optimal experiments or the compromise experiment (nc), together with the 95% confidence intervals and

the corresponding WSSE- values.

Model k KGLU KATP KPEP WSSE

m%

5 312 0.15 0.13 0.10 –

np 312:41751:28 0:201170:9320 0:120770:0461 0:126170:2145 56.9285

nc 311:64713:23 0:166570:0975 0:123970:0164 0:085470:0198 145.7474

n%

1 309:01711:10 0:127870:0798 0:130170:0142 0:104670:0339 129.4858

n%

2 316:69713:80 0:172870:0960 0:135170:0173 0:108070:0257 132.3969

n%

3 306:19711:33 0:120770:0818 0:125670:0159 0:103370:0245 152.1429

n%

4 314:03712:15 0:173970:0921 0:130670:0146 0:077270:0211 147.6936

n%

5 309:98712:06 0:136970:0893 0:126470:0162 0:094570:0213 144.1867

n%

6 313:61713:68 0:168570:1001 0:127770:0168 0:108570:0277 147.0389

n%

7 311:91715:21 0:167270:1016 0:123670:0172 0:146970:2538 118.3752

n%

8 312:01716:82 0:146670:1014 0:131270:0179 0:105170:0257 126.9117

n%

9 309:42716:91 0:129570:1009 0:126670:0199 0:095070:0252 125.5086
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Fig. 11. GDij
- values for the scenario in which the sampling times are optimized, and where the ‘1, ‘2 and ‘1 distance functions are used.

B.M.R. Donckels et al. / Chemical Engineering Science 65 (2010) 1705–1719 1715
times obtained with these methods are not identical (as shown in
Fig. 9), the GDij

- values are very similar. From these results, which
were not reproduced here for brevity, one can conclude that the
considered methods perform equally well for experimental design
exercises where only the sampling times are optimized. Note,
however, that the ideal point method is computationally more
demanding, because next to the optimizations required to
determine the ideal point, one additional optimization is needed
to solve Eq. (16). This is not necessary when the kernel-based
method is used, where the compromise sampling times are
directly calculated from the optimal sampling times.
3.7. Optimization of initial conditions

This section describes the results for the scenario in which the
sampling times and the manipulations (the pulses) were fixed to
the ones from the preliminary experiment, but the initial
concentrations of glucose, ATP and PEP were optimized. For this,
the lower bounds were set to 0 mM, and the upper bounds to
2 mM.
The optimal values for the initial concentrations are shown in
Fig. 12. Because both the characteristics of the two pulses (timing
and concentrations of glucose, ATP and PEP) and the sampling
times are fixed, the initial conditions are chosen such that the
information with regard to the parameters of the individual
models is maximal at the given sampling times. This explains
why, in contrast to the optimal experiments found in the previous
scenario, the optimal experiments are very different for the
individual rival models.

Based on the D-optimal criterion values associated with
these optimal experiments, the ideal point was defined and a
compromise experiment was designed using the three distance
functions described above. In Fig. 12, the initial concentrations
from the obtained compromise experiments are compared to
the initial concentrations from the D-optimal experiments of
the rival models. One can clearly see that the compromise
experiments found using the ‘1 and ‘2 distance function are very
similar, while a different experiment is found with the ‘1 distance
function.

The similarity between the compromise experiments found
using the ‘2 and the ‘1 distance function is obviously reflected in
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Fig. 13. GDij
- values for the scenario in which the initial conditions are optimized, and where the ‘1, ‘2 and ‘1 distance functions are used..
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the GDij
- values, shown in Fig. 13. For both cases, the boxplots

indicate that the majority of these values are larger than one,
indicating that it is advisable to perform the compromise
experiment instead of the corresponding D-optimal experiments.
However, for the case where the ‘1 distance function is used, the
barplots indicate that, although the majority of the medians is larger
than one, some of the GDij

- values are significantly lower (for
instance, for models m1, m3, m6 and m7). In conclusion, one can state
that also for this scenario, the ‘1 distance function seems to be the
least suitable one.
3.8. Optimization of initial conditions and sampling times

The scenario in which both the sampling times and the initial
conditions were optimized is described in this section. As in the
previous scenarios, the initial conditions were allowed to take
values between 0 and 2 mM, 10 samples were taken and the
minimum time between two samples was set to 15 s.

The D-optimal experiments and the compromise experiments
found using the ‘1, ‘2 and ‘1 distance functions are represented in
Figs. 14, 15 and 16. These results indicate that, as more
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Fig. 14. Optimal sampling times (�) found for the nine rival models for the case where the D-optimality design criterion was optimized by varying both the sampling times

and the initial concentrations of glucose, ATP and PEP. The graph at the bottom was obtained by plotting the 10 optimal sampling times of the nine individual models on
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Fig. 15. Optimal sampling times for the individual models (�) and the compromise sampling times (3) found using the ideal point method using the different distance

functions (‘1, ‘2 and ‘1).
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experimental degrees of freedom become available, the D-optimal
experiments become more and more specific for the individual
models. This is especially clear when considering the optimal
sampling times shown in Fig. 14. This specificity obviously makes
the design of a compromise experiment more challenging.

From the GDij
- values shown in Fig. 17, one can conclude that

also for this scenario a compromise experiment is found when the
‘2 distance function is used. However, the values of GDij

obtained
for the two other distance functions are systematically smaller
than the ones obtained with the ‘2 distance function. In addition,
for several models, the medians are smaller than one. This means
that for the majority of the D-optimal experiments more accurate
parameter estimates can be obtained than if the designed
compromise experiment would be performed. This indicates
that the characteristics of the experiments designed using the ‘1

and ‘1 distance functions are not consistent with the ones of a
compromise experiment.

To conclude this section, the reader is pointed to the fact that
the specificity discussed above can also be observed from the GDij

-
values shown in Fig. 17. These GDij

- values are generally larger
than the ones obtained in the other scenarios (Figs. 11 and 13) and
the variation among these values is much higher. This indicates
that for some models, a significant amount of information on its
parameters can be lost when performing an optimal experiment
for another model instead of the compromise experiment. In
other words, an optimal experiment for one model is often all but
optimal for another one.
3.9. Further discussion of the performance of the distance functions

From the results and discussion above, one can conclude that
the ‘2 distance function is the preferred one for this case study.
However, the fact that the ‘1 distance functions performed well in
the first two scenarios but was not the best option in the third
scenario, indicates that the performance of a particular distance
function is case specific. Indeed, the performance of the distance
function depends on the shape of the Pareto front, which,
unfortunately, cannot be clearly visualized for multi-objective
problems with more than three objectives. Nevertheless, when
the ideal point method is applied in another case study, the
approach used here to evaluate the capability to design a



ARTICLE IN PRESS

10−2

10−1

100

101

102

103

104

Γ D
ij

θ̂m
1

θ̂m
2

θ̂m
3

θ̂m
4

θ̂m
5

θ̂m
6

θ̂m
7

θ̂m
8

θ̂m
9

l1 l2 l∞

Fig. 17. GDij
- values for the scenario in which both the initial conditions and the sampling times are optimized, and where the ‘1, ‘2 and ‘1 distance functions are used.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

in
iti

al
 c

on
ce

nt
ra

tio
ns

 in
 m

M

GLU0 ATP0
PEP0

Fig. 16. Initial concentrations of glucose, ATP and PEP associated with the D-optimal experiments of the rival models (m1 corresponds to the black bar, and the bars become

increasingly white as the model number increases), as well as those associated with the compromise experiment found using the ideal point method (horizontal lines) after

using the ‘1 (– –), the ‘2 (—) and the ‘1 (� � �) distance function. Note that for several models the values of PEP0 are zero, as well as those associated with the compromise

experiments found using the ‘2 and ‘1 distance functions.

B.M.R. Donckels et al. / Chemical Engineering Science 65 (2010) 1705–17191718
compromise experiment can also be used to judge the experi-
ments obtained.
4. Conclusions

In this paper, a method was presented to design an experiment
to simultaneously improve the accuracy of the parameter
estimates of several rival models. Since the optimal experiment
for one model may not be optimal for another one, the designed
experiment is called a compromise experiment. The latter is
defined as an experiment that is not optimal for any of the
individual models, but sufficiently informative to improve the
overall accuracy of the parameters of all rival models.

The problem of designing such a compromise experiment is
approached as a multi-objective problem, and the proposed ideal
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point method can be applied to experimental design problems with
experimental degrees of freedom of all types (manipulations, initial
conditions and sampling times). Because closeness can be defined in
several ways, the ‘1, ‘2 and ‘1 distance functions were considered.

The ideal point method was illustrated by applying it in a case
study where nine rival models are proposed to describe the
kinetics of an enzyme-catalyzed reaction (glucokinase). This was
done for a scenario in which only the sampling times were
optimized, one in which the initial conditions were optimized,
and one in which both the initial conditions and the sampling
times were optimized. The results showed that when more
experimental degrees of freedom are available, the optimal
experiments for the individual models become more and more
specific, which makes the design of a compromise rather
challenging. Nevertheless, the ideal point method proved to be
capable of designing compromise experiments in each of the
scenarios, and the results for this case study suggested that the
use of the ‘2 distance function is preferred over the use of the ‘1

and ‘1 distance functions.
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Läuter, E., 1974. Experimental design for a class of models. Statistics: A Journal of
Theoretical and Applied Statistics 5 (4), 379–398.

Lee, J., Lee, S.Y., Park, S., Middelberg, A.P.J., 1999. Control of fed-batch fermenta-
tions. Biotechnology Advances 17, 29–48.

Ljung, L., 1999. System Identification, Theory for the User. Prentice-Hall, Engle-
wood Cliffs, NJ 608pp.

Marler, R.T., Arora, J.S., 2004. Survey of multi-objective optimization methods
for engineering. Structural and Multidisciplinary Optimization 26,
369–395.

Marsili-Libelli, S., Guerrizio, S., Checchi, N., 2003. Confidence regions of estimated
parameters for ecological systems. Ecological Modelling 165, 127–146.

Mehra, R., 1974. Optimal input signals for parameter estimation in dynamic
systems–Survey and new results. IEEE Transactions on Automatic Control 19
(6), 753–768.

Monasterio, O., Cárdenas, M.L., 2003. Kinetic studies of rat liver hexokinase D
(‘glucokinase’) in non-co-operative conditions showing an ordered mechanism
with MgADP as the last product to be released. Biochemical Journal 371,
29–38.

Munack, A., 1991. Optimization of sampling. In: Schügerl, K. (Ed.), Biotechnology, a
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