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imination arises when several models are proposed to describe one and the same
process. To identify the best model from the set of rival models, it may be necessary to collect new
information about the process, and thus additional experiments have to be performed. This paper deals with
the experimental design methodologies that are used to find the experimental conditions that allow to
discriminate among rival models with the least experimental effort. For this, the expected experimental
results should be predicted differently by the rival models, and the uncertainty on the measurements and on
the model predictions should not be too large. These aspects were included in the approach developed by
Buzzi-Ferraris and co-workers [G. Buzzi-Ferraris, P. Forzatti, G. Emig, H. Hofmann, Sequential experimental
design procedure for model discrimination in the case of multiple responses. Chemical Engineering Science
(1) (1984) 81–85], but in their approach the uncertainties are estimated from the information content of the
already performed experiments. This work presents a modification of the Buzzi-Ferraris approach in which
the expected information content of the newly designed experiment is considered, even before the
experiment is performed (anticipatory design). In this way, a better estimate of the uncertainties is achieved,
and an experiment with an increased discriminatory potential is obtained. The approaches were illustrated
and compared by applying them to a case study in which two rival models are proposed to describe the
in vitro kinetics of an enzyme.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Mathematical models are useful tools for engineers. Next to
increasing insight in often complex processes, mathematical models
are used in process design, optimization and control. How one obtains
such models will not be discussed here. However, it is important to
realize that the lack of insight in themodeled systemmay result in the
proposal of several rivalmodels. Obviously, one is especially interested
in the model that describes the system under study in the best way. To
identify this model from a set of rival models, it may be necessary to
collect new information about the system, and thus additional
experiments have to be performed.

A general methodology to discriminate among rival models is
given in Fig. 1. It basically consists of four steps that are performed
in an iterative manner until a stopping criterion is met. The rival
models and the preliminary experimental data are used in a first
step, in which the parameters of the rival models are estimated. A
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second step involves model adequacy testing, performed to find out
which models are able to describe the data in a reasonable manner
and which ones do not. Models that pass this test are used in a third
step, where an optimal discriminatory experiment is designed. This
experiment is then performed in a fourth and last step, after which
the loop is closed by re-estimating the parameters of all rival
models using all data available at that time. This iterative pro-
cedure continues until the best model is identified. Of course,
when all models appear to be inadequate, new models have to be
proposed.

The methodologies to design experiments that allow to dis-
criminate among rival models, often referred to as optimal experi-
mental design for model discrimination (OED/MD) [10–14,17,41,43]
or optimal experimental design for (model) structure characteriza-
tion (OED/SC) [9,44–46], will be the focus of this paper. The main
contribution of this work is a modification of an existing methodol-
ogy [13] that has been successfully used by others [10,11,13,26,41] to
design an optimal discriminatory experiment. These methods will be
described in Section 2, together with some other theoretical aspects
that are indirectly related. Section 3 describes and discusses the
results of a case study in which the different methodologies were
applied and compared. Finally, some concluding remarks are pre-
sented in the last section.
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2. Methods

2.1. Mathematical model representation

In what follows, general deterministic models in the form of a set
of (possibly mixed) differential and algebraic equations are consid-
ered, using the following notations:

:
x tð Þ ¼ f x tð Þ;u tð Þ; θ; tð Þ; x t0ð Þ ¼ x0 ð1Þ

ŷ tð Þ ¼ g x tð Þð Þ ð2Þ
where x(t) is an ns-dimensional vector of time-dependent state
variables, u(t) is an nu-dimensional vector of time-varying inputs to
the process, θ is an np-dimensional vector of model parameters taken
from a continuous, realizable set Θ, and ŷ(t) is an nm-dimensional
vector of measured response variables that are function of the state
variables, x(t). An experiment will be denoted as ξ, and is determined
by the experimental degrees of freedom which can for instance be
measurement times, initial conditions and time-varying or constant
process inputs.

2.2. Parameter estimation

The values of the model parameters, which by definition do not
change during the course of the simulation, have to be determined
from experimental data. This process is called parameter estimation,
and typically consists of minimizing the weighted sum of squared
errors (WSSE) functional by optimal choice of the parameters θ. The
WSSE is calculated as follows

WSSE θ̂
� �

¼ ∑
ne

k¼1
∑
nspk

l¼1
Δ ŷ ξk;θ̂; tl

� �′
�Q � Δ ŷ ξk; θ̂; tl

� �
; ð3Þ

where

Δ ŷ ξk;θ̂; tl
� �

¼ y ξk; tlð Þ− ŷ ξk; θ̂; tl
� �

ð4Þ

represents the difference between the vector of the nm measured
response variables and the model predictions at time tl (l=1,…, nspk

) of
experiment ξk (k=1,…, ne). Further, ne represents the number of
experiments from which data is used for estimating the parameters,
nspk

represents the number of samples in experiment ξk, and Q is an
nm-dimensional matrix of user-supplied weighing coefficients. Typi-
cally, Q is chosen as the inverse of the measurement error covariance
matrix Σ [29,38,46]. In this way, the measurement uncertainty is
incorporated in the WSSE.
Fig. 1. General methodology to discriminate among m rival models (adapted from [17]
and [41]).
2.3. Parameter estimation uncertainty

Since the parameters are estimated from noise-corrupted experi-
mental data, the resulting parameter estimates will be uncertain to
some extent. This section explains the approach followed in this work
to quantify this uncertainty.

The parameter estimation error covariance matrix, denoted as Φ,
represents the uncertainty on the parameter estimates. Obviously, the
quality of these parameter estimates is determined by the information
content of the experimental data from which they are determined.
The latter can be quantified by means of the so-called Fisher
information matrix (FIM), the inverse of which is often used as an
approximation of the parameter estimation error covariance matrix
[1,3,22,28,30,35,40,46,47]. The FIM is calculated as

FIM ¼ ∑
ne

k¼1
FIM ξkð Þ; ð5Þ

where

FIM ξkð Þ ¼ ∑
nspk

l¼1
S ŷ
θ̂

ξk; tlð Þ′�Σ ξk; tlð Þ−1� S ŷ
θ̂

ξk; tlð Þ: ð6Þ

Here, Sθ̂
ŷ
(ξk,tl) represents the nm×np-dimensional parameter sensi-

tivity matrix associated with measurement time tl of experiment ξk,
and is calculated as

S ŷ
θ̂

ξk; tlð Þ ¼ Aŷ ξk; θ; tlð Þ
Aθ

j
θ̂
: ð7Þ

To calculate these parameter sensitivities, nm×np additional
ordinary differential equations are defined and solved together with
the actual model. These equations are obtained by explicit calculation
of the total differentials. For detailed information on this matter, the
reader is referred to [27,34,43].

A closer look at Eq. (6), shows that the FIM is composed of two
components, the parameter sensitivities (Sθ̂

ŷ
) and the measurement

error covariance matrix (Σ). The parameter sensitivity with respect to
a certain state variable expresses how much that state variable will
change when a parameter is slightly perturbed. A state variable that is
highly sensitive to a certain parameter will therefore contain a lot of
information about this parameter, while a variable that is insensitive
to the parameter does not contribute to the information content for
that parameter. The role of the measurement error covariance matrix
in the calculation of the FIM is rather straightforward, since it is
obvious that a measurement associated with a large measurement
error will contribute less to the information content than a measure-
ment with a small measurement error.

From the parameter estimation error covariance matrix, the
100· (1− α) percent confidence interval associated with parameter
estimate i can be calculated as [29]

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ i; ið Þ

p
� tα=2n−np ; ð8Þ

where n represents the total number of data points, np represents the
numberof parameters thatwere estimated, and tn−np

α /2 represents theupper
α/2 quantile of Student's tdistribution for the given confidence levelα and
n−np degrees of freedom.

2.4. Model prediction uncertainty

The uncertainty on the parameter estimates will propagate when
simulating themodel, and themodel predictionswill consequently be
uncertain as well. Also in the case of model predictions, a covariance
matrix is used to quantify the uncertainty. The model prediction error
covariance matrix associated with time tl of experiment ξk, denoted



Fig. 2. Trajectories of two models (full lines) with their associated model prediction
uncertainties (dotted/dashed lines), as well as a number of measurements (●) with
their associated measurement uncertainty.
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as Ω(ξk, tl), is calculated by propagating the uncertainty on the
parameter estimates, according to [38]

Ω ξk; tlð Þ ¼ S ŷ
θ̂

ξk; tlð Þ �Φ � S ŷ
θ̂

ξk; tlð Þ′: ð9Þ

The confidence intervals associated with the model predictions
are calculated in a similar way as those of the parameter estimates
(Eq. (8)) [38].

2.5. A note on the linearapproximation of parameterandmodel prediction
uncertainties

The common approaches to determine the parameter and model
prediction uncertainties are based on linear propagations of uncer-
tainties, and on the assumption of Gaussian white noise. Conse-
quently, they should only be considered as approximate estimates,
especially when working with non-linear models. Nevertheless, it is a
common practice to use these approximations for experimental
design purposes. When designing experiments to increase the
accuracy of the parameter estimates, for instance, scalar functions of
the FIM are maximized (for instance in [3,4,9,19,28,35,45–47]), and
also the design of optimal discriminatory experiments often relies
on linear approximations of the model prediction uncertainties (as
discussed below).

Experimental designs based on these approximations can
therefore be less informative than expected [8]. However, from a
heuristic point of view, they are still very useful. Some interesting
techniques have been described in literature [1,2,8,24,38,47] to
achieve better approximations of the uncertainties for non-linear
models, but these are computationally demanding. This currently
makes them less suited [24] for optimal experimental design
purposes.

2.6. Model adequacy testing

To test a model's adequacy, a lack-of-fit test, as outlined for
instance in [14,17,18], can be used. This test is based on the property of
the WSSE-functional being a sample from a χ2 distribution with n−np
degrees of freedom. However, this property only holds under two
assumptions [18]: (i) the measurements are disturbed with random
zero mean normally distributed noise with known (or a priori
estimated) variance, and are not subject to systematic errors; and
(ii) no model errors are present.

In this work, data is generated by adding noise to the simulation
results of which the characteristics are known, so the first assump-
tion is always valid. Consequently, when the WSSE is significantly
larger than the expected value of the appropriate χn − np

2 distribution,
one can conclude that the model is not able to describe the
experimental data in a reasonable manner and the model can thus
be rejected.

2.7. Optimal experimental design for model discrimination

In general, optimal experimental design is an optimization
problem, where the optimum of a well-defined objective function is
sought by varying the experimental degrees of freedom. This can be
formalized as follows

ξ★ ¼ argmax
ξaΞ

T ξð Þ: ð10Þ

The experimental degrees of freedom, ξ, are restricted by a
number of constraints that define a set of possible experiments,
denoted as Ξ. These constraints are determined by the experimental
setup and are specified before the start of the experimental design
exercise.
2.7.1. Objective functions for OED/MD
Suppose, for simplicity, that one has to design an experiment to

discriminate between two rival models (m=2). It is clear that the data
expected from the designed experiment should be predicted
differently by the two models to allow for model discrimination.
Hunter and Reiner translated this heuristic into an objective function
[23] given by

Tij ξð Þ ¼ ∑
nsp

l¼1
Δ ŷij ξ;θ̂i;θ̂j; tl

� �′
�Δ ŷij ξ;θ̂i;θ̂j; tl

� �
; ð11Þ

where

Δ ŷij ξ;θ̂i;θ̂j; tl
� �

¼ ŷi ξ;θ̂i; tl
� �

− ŷj ξ; θ̂j; tl
� �

ð12Þ

represents the difference between the nm-dimensional vectors of the
predicted outcomes of experiment ξ by model i and model j at time tl,
and nsp represents the number of samples. Note that this notationwill
be simplified to Δŷij(ξ, tl) in the following.

It is important to point out that this objective function does not take
into account the uncertainty on the measurements, nor on the model
predictions. However, it is important to do so, as illustrated in Fig. 2. The
difference in the model predictions may be high for a particular subset of
the experimental degrees of freedom, but when those experimental
conditions result in a situation that is characterized by a high measure-
ment error, discriminationmaynot be possible after all. This is the case for
the group of measurements on the left in Fig. 2. A similar reasoning holds
for the uncertainty on the model predictions. For instance, the group of
measurementson the right (Fig. 2) has smallermeasurementerrors, and is
located where the difference in the model predictions is significant.
However, this region is not very interesting for model discrimination
because of the large uncertainty on the model predictions. Model
discrimination will be possible for the group of measurements in the
middle, where both the measurement errors and the model prediction
uncertainties are relatively small, and the difference in the model
predictions is significant.

To incorporate the uncertainty on the measurements, a similar
approach as the one used in Eq. (3) can be followed [21] resulting in

Tij ξð Þ ¼ ∑
nsp

l¼1
Δ ŷij ξ; tlð Þ′�Σ ξ; tlð Þ−1�Δ ŷij ξ; tlð Þ; ð13Þ

where Σ(ξ, tl) represents the measurement error covariance matrix at
time tl of experiment ξ.

The objective function proposed by Buzzi-Ferraris and co-workers
[13] builds further on this and also incorporates the uncertainty on the
model predictions. This is done by weighing the difference in
the predicted outcomes of an experiment, denoted as Δŷij(ξ, tl), with
the uncertainty associated with it. This uncertainty originates from



Fig. 3. The full-line boxes (–) in this figure represent the different steps currently
performed when designing an optimal discriminatory experiment according to the
Buzzi-Ferraris methodology. In the modified Buzzi-Ferraris methodology a number of
additional steps are performed, which are shown by the dashed-line boxes (– –).
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two sources. One has to consider the uncertainty on the model
predictions as such (denoted as Ω), as well as the uncertainty on the
measurements (denoted as Σ). When Σ and Ω are assumed to be
independent, the uncertainty on the predicted outcome of an
experiment can be estimated as Σ+Ω. Although this assumption is
not entirely valid, it is a reasonable one in this context because the
objective function is used as a heuristic. Now, under a similar
assumption, the uncertainty on the difference between the predicted
outcomes of an experiment bymodel i and j, denoted asΨij, is given by

Ψij ¼ Σ þΩi þΣþΩj
¼ 2 � ΣþΩi þΩj;

ð14Þ

and the objective function thus becomes

Tij ξð Þ ¼ ∑
nsp

l¼1
Δ ŷij ξ; tlð Þ′�Ψij ξ; tlð Þ−1�Δ ŷij ξ; tlð Þ: ð15Þ

The objective functions described above were developed to
discriminate between two models. To discriminate between more
than two rival models, two approaches can be followed. In a first
approach [14,41], an optimal discriminatory experiment is designed for
each model pair. Whenmmodels are proposed, this means that m!

m−2ð Þ! � 2!
experiments have to be designed. From these experiments, the one
associated with the highest Tij(ξ) value will eventually be performed. In
this way, it should be possible to eliminate the worst models faster
compared to the alternative approach [41,12,20], where the optimal
discriminatory experiment is designed as follows

ξ★ ¼ argmax
ξaΞ

∑m−1
i¼1 ∑m

j¼iþ1 Tij ξð Þ: ð16Þ

In this approach, the value of the objective function can be seen as
ameasure of the average discriminatory potential over all model pairs.
This approach requires less computational resources, but may lead to
an experiment where the discriminatory potential is low for the
individual model pairs [41].

2.7.2. Anticipatory approach to OED/MD
As advocated above, the objective function proposed by Buzzi-

Ferraris and co-workers is superior to the others from a conceptual
point of view because of the importance of uncertainty with regard to
model discrimination. In addition, others alreadyapplied this objective
function successfully [10,11,26,41]. The methodology proposed in this
paper also uses this objective function, but the methodological frame-
work is modified.

In the Buzzi-Ferraris methodology, the parameter estimation error
covariance matrix is estimated from the information present in the
experiments that have already been performed, and thus from the
corresponding Fisher information matrix (as explained in Section 2.3).
This results in the following equation:

Φ−1 ¼ ∑
ne

k¼1
FIM ξkð Þ: ð17Þ

In this equation, ne represents the number of experiments
performed prior to the experimental design step, and FIM(ξk)
represents the Fisher information matrix associated with experiment
ξk. This covariance matrix is used as an input to the experimental
design step and is used to estimate the model prediction uncertainties
of the new experiment through Eqs. (9), (14) and (15). By doing so, the
information that would be gathered when performing the (ne+1)th
experiment (and that would eventually be used when the model
adequacy is tested) is simply ignored.

In our modified Buzzi-Ferraris methodology, the parameter
estimation error covariance matrix is recalculated for each proposed
experiment by including the FIM associated with it. In this way, the
expected information content of the newly designed experiment is
accounted for, even before the experiment is performed (anticipatory
design). This can be formalized as follows

Φ−1 ¼ ∑
ne

k¼1
FIM ξkð Þ þ FIM ξneþ1

� �
; ð18Þ

where the expected information content of the newly designed
experiment is represented by FIM(ξne + 1), and calculated using Eq. (6).

2.7.3. Calculation of the objective functions
When designing an optimal discriminatory experiment, the

optimization algorithm (see Section 2.8) will propose an experiment
which is evaluated after calculating the value of the objective function
(Tij). For the objective functions given by Eqs. (11) and (13), the
calculation of Tij is straightforward.

However, the calculation of the other objective function, that is
Eq. (15), is more complicated, and it may not be easy to extract the
different steps that have to be performed from the equations. Therefore,
the different steps are depicted in Fig. 3 and will be described below.

As stated in the previous section, this objective function (Eq. (15))
is used by both the Buzzi-Ferraris and the modified Buzzi-Ferraris
methodology. The full-line boxes in Fig. 3 represent the different steps
performed when designing an optimal discriminatory experiment
according to the Buzzi-Ferraris methodology, while the dashed-line
boxes represent the additional steps to be performed when applying
the modified Buzzi-Ferraris methodology proposed in this work
(anticipatory approach). The original Buzzi-Ferraris methodology
starts from an estimate of the parameter estimation error covariance
matrix, which is calculated prior to the experimental design step
(from Eqs. (17) and (5)) and remains the same throughout the
experimental design. In the anticipatory approach, the parameter
estimation error covariance matrix is recalculated for each proposed
experiment (using Eq. (18)), and is then used in the calculation of Tij
through Eqs. (9), (14) and (15).

2.8. Optimization algorithms

Both parameter estimation and optimal experimental design are
optimization problems. To find the optimum, the use of an optimiza-
tion algorithm is required. In this work, the SIMPSA optimization
algorithm proposed by Cardoso et al. [15] was used. This algorithm
combines the non-linear simplex [36] and the simulated annealing
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algorithm [25], and it showed good performance for both the
parameter estimation and the experimental design problems encoun-
tered in this work. For more information on these optimization
algorithms, the reader is referred to the cited papers.

The SIMPSA algorithm was selected from the many different
optimization algorithms described in literature (for instance, in
[6,7,31,32]) for two reasons. First, because it is a global optimization
algorithm. This is important because both parameter estimation
experimental design problems can suffer from local minima/maxima,
and the use of a global optimization algorithm is therefore required.
Several examples can be found in literature where such algorithms
were used, both for parameter estimation [16,32,39] and experimental
design exercises [5,19,32,43]. Second, because it requires little to no
configuration. Typically, several parameters are available to tune an
algorithm, and the values at which they are set determine the
efficiency of the optimization algorithm. However, the optimal
settings are mostly problem specific, and manual tuning is typically
required. With the SIMPSA algorithm, some of the parameters are
automatically tuned and the number of parameters that remains to be
tuned manually is limited.

To handle constraints on the optimization variables, which can be
parameters and experimental degrees of freedom in this context, a
penalty function was used. When the optimization algorithm
proposed a value lying beyond the upper or lower bound, the
corresponding value of the objective function was decreased (max-
imization) or increased (minimization) with a large penalty term that
increased as the proposed value was further away from the bound.

2.9. Notations for the different approaches

Given the theoretical aspects outlined in Sections 2.7.1 and 2.7.2,
four possible approaches can be followed to design an optimal
discriminatory experiment. Here, a notation is introduced that should
simplify the discussion of the case study presented in Section 3.

The notations Ta and Tb will respectively be used to indicate
the approaches in which the objective functions given by Eqs. (11)
and (13) are used. The Buzzi-Ferraris methodology and the
modified Buzzi-Ferraris methodology will be referred to as Tc and Td,
respectively.

3. Results and discussion

In this section, the general methodology (as depicted in Fig. 1) and
the experimental design concepts introduced in the previous section
in particular, will be illustrated on a relatively simple example, where
two models are proposed to describe the in vitro kinetics of the
enzyme glucokinase (glk, EC: 2.7.1.2). This enzyme catalyzes the
conversion of glucose (GLU) and ATP to glucose-6-phosphate (G6P)
and ADP, which is the first reaction of the glycolysis pathway.

3.1. General model

Before describing the different kinetics, a general model for the
enzymatic conversion process is formulated. For this, it is assumed
that the experimental setup allows one to give a pulse of glucose, ATP
and PEP, or a mixture thereof.

The volume of the reaction vessel [L], denoted as V, is determined
by the flow rate of the pulse [L/s], denoted as Fp, and by the sampling
(frequency and volume). However, in this example, the sampling
volume will be neglected and the volume can thus be described by

dV
dt

¼ Fp: ð19Þ

For the concentration of glucokinase [mg/L], denoted as GLK, only a
dilution effect is considered. Inactivation of the enzyme is neglected,
which is a reasonable assumption since a typical experiment ends
after 20 min. The resulting equation for describing the enzyme con-
centration is given as

dGLK
dt

¼ −
Fp
V

� GLK: ð20Þ

The equations used to describe the other state variables (all of
which are expressed in mM) are given as:

dGLU
dt

¼ Fp
V

� GLUp−GLU
� �

−vglk; ð21Þ

dATP
dt

¼ Fp
V

� ATPp−ATP
� �

−vglk; ð22Þ

dG6P
dt

¼ −
Fp
V

� G6Pþ vglk; ð23Þ

dADP
dt

¼ −
Fp
V

� ADPþ vglk; ð24Þ

dPEP
dt

¼ Fp
V

� PEPp−PEP
� �

: ð25Þ

Here, GLUp, ATPp and PEPp represent the concentrations [mM] of
glucose, ATP and PEP in the pulse, respectively, and vglk represents the
velocity equation describing the kinetic behavior of glucokinase [mM/s].

As stated before, the kinetic equation is different for the two rival
models. However, each one is of the following form:

vglk ¼ k � GLK �
GLU
KGLU

� ATP
KATP

u GLU;ATP; PEPð Þ ; ð26Þ

where the parameter k expresses the maximum specific reaction rate
[U/mg], where one unit is defined as that amount of enzyme that
catalyzes 1 μmol of substrate in 1 min. The part that is different for the
rival models is represented by φ(GLU, ATP, PEP).

3.2. Rival models

The conversion catalyzed by glucokinase is a bi-reactant system
[42]. Two reaction mechanisms are possible for such a system:
random and ordered. In a random bi-reactant system the order in
which the two substrates bind doesn't matter, whereas in an ordered
bi-reactant system one of the substrates has to bind to the enzyme
first, before the second substrate can bind and the reaction can take
place. In addition, it was recently suggested that glucokinase may be
inhibited by phosphoenolpyruvate (PEP) [37], and more specifically
that PEP inhibits the binding of ATP to the enzyme.

Based on these considerations, two models were built to describe
the enzyme kinetics. Themodels differ in the equation used to describe
the enzyme kinetics, each of which is based on a particular hypothesis
of how the enzyme works (random or ordered bi-reactant system).

For model m1, it was assumed that the reaction mechanism of
glucokinase was a random bi-reactant system. Since PEP inhibited the
binding of ATP to the enzyme, this results in the following equation:

u GLU;ATP;PEPð Þ ¼ 1þ GLU
KGLU

þ ATP
KATP

þ PEP
KPEP

þ GLU
KGLU

� PEP
KPEP

þ GLU
KGLU

� ATP
KATP

:

ð27Þ
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For model m2, an ordered reaction mechanism was assumed,
which results in the following equation:

u GLU;ATP;PEPð Þ ¼ 1þ GLU
KGLU

þ GLU
KGLU

� PEP
KPEP

þ GLU
KGLU

� ATP
KATP

: ð28Þ

3.3. Real model and data generation

According to literature [33,37], the reaction mechanism of
glucokinase is ordered, with glucose as the first binding substrate,
and PEP inhibits the binding of ATP to the enzyme. Based on these
considerations, the second model was chosen as the real model (m2

★).
This model was used to generate experimental data by simulating the
experiment using the parameter values tabulated in Table 1, and by
adding random noise to mimic the measurement error. The standard
deviations of the measurements were calculated in the same way as
suggested by Ternbach [43]:

σy ¼ ŷ � 1y � 1þ 1

ŷ
lby
þ ŷ

lby

� �2

0
B@

1
CA: ð29Þ

Here, ςy represents a constant minimal relative error, and lby
represents the lower accuracy bound on the measurement of y. In this
way, the standard deviation of the measurements are proportional to
the value of ŷ, but increase when the latter approaches the lower
accuracy bound on the measurement.

3.4. Preliminary experiment

To initiate the case study, a preliminary experiment was defined
and performed in silico. For this experiment, the volume of the
reaction vessel was set to 10 mL, and the initial glucokinase
concentration was set such that 5 units were present in the
reaction mixture. Further, it was assumed that no G6P, ADP and PEP
were present at the start of the experiment, and the initial con-
centrations of glucose and ATP were set to 1.5 mM and 0.5 mM,
respectively.

During the experiment, two pulses were given, with the pulse
volume of to 1 mL. The first pulse was given 5min after the start of the
experiment, and contained only ATP. The ATP concentration in the
pulse was chosen such that the ATP concentration in the reaction
mixturewas raised to 1.5mM. The second pulse, given 10min after the
start of the experiment, contained glucose and PEP, and their
concentrations in the pulse were chosen such that the resulting
concentrations in the reaction mixture were 1.5 mM and 0.1 mM,
respectively.

The experiment stopped after 20 min, and ten measurements of
glucose, ATP, G6P and ADP were taken in duplicate (see Fig. 4). The
minimal relative errors (ς) were set to 0.05 for all measured state
variables, and the lower accuracy bounds on the measurements were
defined as 0.1 mM.
Table 1
Parameters of the real model (m2

★) that were used to generate experimental data, and
the parameter estimates obtained after fitting the rival models to the data from the
preliminary experiment, together with the corresponding WSSE-values

Model k KGLU KATP KPEP WSSE

m2
★ 312.00 0.1500 0.1300 0.1000 –

m1 308.05 0.0087 0.1390 2.8963 57.1080
m2 309.81 0.2429 0.1152 0.0276 56.9285
3.5. Parameter estimation

The parameters of the rival models were estimated using the data
from the preliminary experiment (Fig. 4), and using the optimization
algorithm described in Section 2.8. Since negative parameter values
would not make any sense, the lower bounds were set to zero. The
upper bounds were set to 1000 U/mg for parameter k, 2 mM for
parameter KGLU, and 25 mM for both parameters KATP and KPEP.

The results of this parameter estimation exercise are shown in
Table 1, and Fig. 5 shows how both models describe the experimental
data after estimating their parameters. The figure also shows the 95%
confidence intervals on these model predictions, which represent the
uncertainty associated with them. One can see that these confidence
intervals sometimes become negative, which is of course unrealistic
and is due to the fact that the model prediction uncertainties were
obtained by linearly propagating the uncertainty on the parameter
estimates.

3.6. Model adequacy testing

The good agreement between the data and the model predictions
is obviously reflected in a relatively small value of the sum of squared
errors (SSE). As shown in Table 1, the SSE-values for modelsm1 andm2

were 57.1080 and 56.9285, respectively. According to the model
adequacy test outlined in Section 2.6, these values have to be
compared to the critical χ2 value taken from a χ76

2 distribution
(n=80 and np=4) with a chosen confidence level of 95%, which is
equal to 97.3510. From this, one can conclude that both models
adequately describe the data.

3.7. Design of optimal discriminatory experiments

Since both models passed the model adequacy test, an experiment
should be designed to discriminate between them. In order to make
the differences between the approaches easier to explain
and interpret, the experimental design was restricted to only op-
timizing the measurement times, while keeping the other experi-
mental degrees of freedom fixed. In addition, this restriction led to a
drastic decrease of required computation time, as will be discussed in
Section 3.11.

For this experimental design exercise, a new experiment was
defined and the optimal sampling times were determined using the
different approaches (Ta, Tb, Tc and Td). In this experiment, three
pulses were given, for each of which the volume was equal to 1 mL.
The first pulse was given 5 min after the start of the experiment, and
contained ATP and PEP. The ATP concentration in the pulsewas chosen
such that the ATP concentration in the reaction mixture was raised to
1.5 mM. The concentration of PEP in the pulse was set to 0.5 mM,
which was also the case for the other pulses. The second pulse, given
10 min after the start of the experiment, contained glucose and PEP,
and the glucose concentration was chosen such that the resulting
concentrationwas 1.5mM. The third pulse contained ATP and PEP, and
the concentration of the former was set to 3 mM. The experiment
stopped after 20min, and only glucose and ADPweremeasured. These
measurements were taken in duplicate, and the minimal relative
errors (ς) were set to 0.015 for the measured state variables, and the
lower accuracy bounds on the measurements were defined as 0.1 mM.
Further, the minimum time interval between two measurements was
set to 15 s.

Using the parameters tabulated in Table 1, the two models predict
the experiment as shown in Fig. 5. To gain insight into the different
methodologies, ten scenarios were defined with the number of
sampling times ranging from one to ten. The results of the scenario
in which ten optimal sampling times were determined will be
discussed in Section 3.8, and the other scenarios will be discussed in
Section 3.9.



Fig. 4. Simulation of the preliminary experiment (– –) using the real model (m2
★), as well as the experimental data (●) obtained from it.
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3.8. Discussion of the experiment with ten samples

The results of the scenario in which ten optimal sampling times
were determined are shown in Fig. 7. For each of the presented
approaches (Ta, Tb, Tc and Td), the discriminatory power at a given
point in time can be calculated using the appropriate objective
function (Eqs. (11), (13) or (15)), by assuming that one only samples at
that time. The trajectories of the objective functions obtained in this
way are shown in Fig. 7, as well as the optimal sampling times
obtained from them.
Fig. 5. Rival models predicting (—) the data from the preliminary experiment (●) after param
The upper graph of Fig. 7 shows the trajectory of the objective
function used in the Ta approach. This objective function (calculated
using Eq. (11)) represents the difference in the model predictions.
From the graph, one can see that the difference between the models
is rather small, with the biggest difference occurring around 12 min.
So, the optimal sampling times are predominantly located in
this region when only the model predictions are considered (Ta
approach).

The second graph of Fig. 7 shows the trajectory of the objective
function used in the Tb approach, which differs from the Ta approach
eter estimation, as well as the 95% confidence intervals on the model predictions (– –).



Fig. 6. Rival models predicting (—) the experiment for which the sampling times were optimized. The dashed lines represent the 95% confidence intervals on the model predictions.
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by the fact that the measurement uncertainty is accounted for. The
latter is more or less proportional to the values of the measured state
variables (see Eq. (29)), which explains the obtained results. Indeed,
from Figs. 6 and 7, one can see that the largest difference in the model
prediction occurs at relatively high values of the measured state
variables, which are thus associated with relatively high measure-
ments errors. The optimal sampling times are therefore partly shifted
to the regions around 7 min and 17 min, where the measurement
errors are smaller.

In the Tc approach, the model prediction uncertainties (shown in
Fig. 5) are taken into account. These uncertainties are quite high,
especially where a large difference between the model predictions is
observed. This results in very low values of the objective function
(Eq. (15)), and thus in a low discriminatory power of the experiment.
In fact, the value of Tij, which is obtained as the sum of the values of
the individual sampling times, is merely equal to 1.14. According to
Chen et al. [17], the experiment is worth performingwhen this value is
larger than nsp ·nm, which is 20 in our example (two measured state
variables and ten sampling times).
Fig. 7. From top to bottom, these graphs show the trajectory of the objective function obtai
optimal sampling times (●) in the scenario with ten samples.
When applying the anticipatory approach (Td approach), the
parameter and model prediction uncertainties are recalculated for
each experiment the optimization algorithm proposes. The optimal
sampling times that were obtained in this way, are spread out over
the three regions where the difference in the model predictions is
significant (see Fig. 7). The model prediction uncertainties associated
with this optimal experiment, which were also used when calculat-
ing the objective function (Eq. (15)), are shown in Fig. 8. As can be
seen, it was possible to significantly reduce the model prediction
uncertainty, and an experiment is obtained that resembles the one
found with the Tb approach.

3.9. Apparent similarity between Tb and Td

As discussed in the previous section, the Td approach seemed to
bring forth a similar experiment as the one obtained by the Tb
approach, although the latter does not consider the uncertainty on the
model predictions. The reasonwhy both approaches result in a similar
experiment is that the information content of the designed experiment
ned when, respectively, the approaches Ta, Tb, Tc and Td were applied to determine the



Fig. 8. Rival models predicting (—) the experiment for which the sampling times were optimized. The dashed lines (– –) represent the 95% confidence intervals on the model
predictions as they were used when applying the anticipatory approach.
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is large enough to decrease the prediction uncertainty to a level where
its impact on the experimental design becomes rather limited. To
investigate this similarity in more detail, nine additional experimental
design exercises were performed, where the number of samples to be
optimized ranged from one to nine. The results are shown in Fig. 9 as
well as those from the scenario with ten samples.

One clearly sees that the similarity between the experiments
designed using the Tb and the Td approach does not always exist. In
fact, some interesting observations can be made from Fig. 9 that
clearly illustrate the anticipatory nature and the power of the Td
approach. For instance, when one or two samples are optimized, the
region with the largest difference in the model predictions (around
12 min) cannot be exploited because the uncertainty in this region
cannot be sufficiently reduced. However, with three and more
samples, this is no longer the case. In addition, three samples appear
to be enough, since the fourth, fifth and sixth samples to reduce the
uncertainty in the region around 17 min. Another example is found
when comparing the scenarios with seven, eight and nine samples.
Fig. 9. Optimal sampling times obtained after applying the Ta, Tb, Tc and Td approaches for the
These show that it appears to be beneficial to place the eighth sample
in the region around 12 min, rather than placing it in the region
around 7 min. However, when nine samples are optimized, two
samples are placed in this region. Apparently, one point cannot
achieve a sufficient decrease in model prediction uncertainty, while
two samples can.

From the discussion above, it is clear that the Tb and the Td
approaches do not always lead to the same experiments. In fact, this is
only the case when the information content of the designed
experiment is high enough to reduce the model prediction uncer-
tainty beyond a certain level. If that is the case, the impact ofΩi andΩj

from Eq. (14) will become so small, that the experimental design will
be dominated by the measurement error (Σ), and thus a similar
experiment will be found as with the Tb approach.

It is of course impossible to foresee this, and one cannot know
beforehand whether the experiments designed using these
approaches will be similar or not. The premise that both approaches
lead to similar experiments is thus not a valid one.
ten different scenarios in which the number of sampling times ranges from one to ten.
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3.10. A note on the estimate of the uncertainty on the model predictions

As advocated in Section 2.7.1, the uncertainty on the model
predictions is important with regard to model discrimination, and
more specifically for the design of discriminatory experiments. In
principle, both the Tc and the Td approach will select the experimental
degrees of freedom such that the expected model prediction
uncertainty is small at the times when samples are taken, thereby
increasing the discriminatory potential of the resulting experiment.
However, the anticipatory nature of the Td approach is likely to result
in more reliable estimates of the model prediction uncertainties that
will eventually obtained after performing the designed experiment
and re-estimating the model parameters.

This is illustrated in Fig. 10. Here, the uncertainties on the model
predictions of glucose are shown (the results for ADP are similar). For
clarity, these are the values that are added to/subtracted from the
model predictions to get figures like Figs. 6 and 8. Fig. 10 compares the
model prediction uncertainties as they are used in the Tc approach
(dashed lines in the upper graphs) and in the Td approach (dashed lines
in the lower graphs) to those obtained after the experiment is
performed and the model parameters were re-estimated (dotted
lines). From this figure, one can clearly see that the model prediction
uncertainties used in the experimental design (dashed lines) are closer
to the dotted lines when the Td approach was used.

Note that the model adequacy test described in Section 2.6 does not
consider the model prediction uncertainty. In fact, little attention has
beengiven to this aspect in literature so far.Nevertheless, the anticipatory
approach proposed in this paper provides away to accommodate for this.

3.11. Computational costs of the different approaches

In the search for the optimal discriminatory experiment, many
experiments are proposed by the optimization algorithm for which
the discriminatory potential has to be assessed. The latter requires
some prior calculations of which the computational costs differ for the
presented approaches.

In the Ta approach, simulating the experiment with the rival
models brings forth all information necessary to calculate the
trajectory of the objective function. When the Tb approach is applied,
the measurement uncertainties are necessary as well. Although these
were calculated from the simulation results in this in silico example,
they are not calculated in practical applications but determined by the
experimental setup. Hence, the computational costs associated with
the Ta and Tb approaches are identical.

When the parameter andmodel prediction uncertainty have to be
estimated, which is the case for the Tc and Td approaches, the model
Fig. 10. The 95% confidence intervals associated with the model predictions of the glucose con
lines in the upper graphs), and according to the Td approach (dashed lines in the lower graph
estimating the parameters (dotted lines).
is extended with additional ordinary differential equations
to calculate the parameter sensitivities. This will obviously result in
a larger computational cost. The additional computational cost
caused by the fact that the parameter estimation error covariance
matrix has to be recalculated in the Td approach is minor and only
involves some extra matrix manipulations, as can be concluded from
Eqs. (5) and (18).

Note that in the special case where only the measurement times
are to be optimized (as in the case study presented in this paper), the
use of an optimization algorithm is not necessary for the Ta, Tb and Tc
approaches. This is because the choice of the sampling times has no
effect on the model predictions, nor on the model prediction
uncertainties. In other words, the trajectory of Tij is calculated once,
and the optimal sampling times are easily determined from this
trajectory. For the Td approach, this is not the case, and a new
trajectory of Tij has to be calculated for each set of the sampling times.
However, the extra computational costs are relatively small, because
the values of the parameter sensitivities at the proposed sampling
times can be obtained by sampling from the (detailed) parameter
sensitivity profiles calculated prior to the experimental design
exercise.

4. Conclusions

This paper dealt with experimental design methodologies that
are used to find the experimental conditions that allow to
discriminate among rival models with the least experimental effort.
For this, the expected experimental results should be predicted
differently by the rival models, and the uncertainty on the
measurements and on the model predictions should not be too
large. In this paper, three existing approaches to deal with the
problem of model discrimination were described, one of which (the
one developed by Buzzi-Ferraris and co-workers in 1984 [13]) was
improved by taking into the expected information content of the
newly designed experiment, even before the experiment is
performed (anticipatory design).

The presented approaches were illustrated and compared by
applying them to a case study in which two rival models were
proposed to describe the kinetics of an enzyme. The experimental
design exercise consisted of determining the optimal sampling
times for a given dynamic profile of the manipulatory variables. The
results showed that the anticipatory approach arranges the
experimental degrees of freedom such that the expected model
prediction uncertainty is small at the times when samples are taken,
thereby increasing the discriminatory potential of the resulting
experiment.
centration as used when designing an experiment according to the Tc approach (dashed
s), as well as the ones obtained after performing the designed experiment and after re-
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The results also showed that applying the anticipatory approach
can result in an experiment that is similar to the one found with the
simpler and less computationally expensive approach that only
includes the uncertainty on the measurements. This was the case
when the information content of the designed experiment was large
enough to decrease the model prediction uncertainty to a level
where its impact on the experimental design was rather limited, and
the experimental design became dominated by the measurement
error.

In addition, the results showed that, compared to the original
approach, the anticipatory approach led to more reliable estimates of
the model prediction uncertainties that are eventually obtained after
performing the designed experiment and re-estimating the model
parameters. This is important because when this estimate is far from
the one eventually used in the model adequacy test, the discrimina-
tory potential of the experiment may not be as high as expected while
designing the experiment.
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