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Abstract: When several models are proposed for one and the same process, experimental design techniques are available
to design optimal discriminatory experiments. However, because the experimental design techniques are model-based,
it is important that the required model predictions are not too uncertain. This uncertainty is determined by the quality
of the already available data, since low-quality data will result in poorly estimated parameters, which on their turn
result in uncertain model predictions. Therefore, model discrimination may become more efficient and effective if this
uncertainty is reduced first. This can be achieved by performing dedicated experiments, designed to increase the accuracy
of the parameter estimates. However, performing such an additional experiment for each rival model may undermine the
overall goal of optimal experimental design, which is to minimize the experimental effort. In this article, a kernel-based
method is presented to determine optimal sampling times to simultaneously estimate the parameters of rival models in
a single experiment. The method is applied in a case study where nine rival models are defined to describe the kinetics
of an enzymatic reaction (glucokinase). The results clearly show that the presented method performs well, and that a
compromise experiment is found which is sufficiently informative to improve the overall accuracy of the parameters of
all rival models, thus allowing subsequent design of an optimal discriminatory experiment.
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Introduction

Many experimental studies are performed (1) to determine the
model structure that adequately describes the process under study
(often called model discrimination), or (2) to obtain (more) accurate
estimates of the model parameters. For both problems, litera-
ture provides experimental design methods that help the experi-
menter to plan the experiments. For the problem of model dis-
crimination, the methods described in refs. 1–5 can be used,
while the ones described in refs. 6–9 can be used to design
experiments that result in an increased accuracy of the param-
eter estimates. Common to these experimental design methods
is the overall goal to maximize the information content of the
designed experiments and thus to minimize the experimental effort
needed.

The most intuitive approach to address the problems of model
discrimination and accurate parameter estimation is to deal with
them successively.9, 10 First, experiments are designed and per-
formed to choose between the rival model structures, and then, once
the most promising model structure has been selected, experiments
are designed and performed to accurately estimate its parameters.
Alternatively, one could deal with both problems simultaneously.
For this purpose, a joint criterion has been described10 where
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the basic design strategy is to emphasize model discrimination
when there is considerable doubt as to which model is best, and
gradually shift the emphasis to parameter estimation as experimen-
tation progresses, and model discrimination becomes possible. Both
approaches thus deal with model discrimination first, and then the
focus is (gradually) shifted to parameter estimation.

From literature, however, it is known that the uncertainty on the
model predictions is of crucial importance for model discrimination.
This is because the experimental design methods are model-based,
and high model prediction uncertainties obviously hamper the effi-
cacy and efficiency of the model discrimination procedure.1–3, 11–15

These model prediction uncertainties are determined by the quality
of the available data, since low-quality data will result in poorly
estimated parameters, which on their turn result in uncertain model
predictions. The discrimination among several rival models may
thus become more efficient and effective if this uncertainty could be
reduced prior to the start of the model discrimination procedure.

Reducing the uncertainty on the model predictions can be
achieved by designing and performing experiments dedicated to
reducing the uncertainty on the parameter estimates. However,
performing an additional experiment for each rival model may
undermine the overall goal of optimal experimental design, since
this would require at least as many experiments as the number of
rival models. Therefore, this article presents a method to design a
compromise experiment, which is not optimal for one or more of
the individual rival models but is sufficiently informative to improve
the overall accuracy of the parameters of all rival models.

This article is organized as follows. In the section “Methods,” the
theory on parameter estimation and optimal experimental design for
parameter estimation is explained, as well as a method to design the
compromise experiment. This kernel-based method is illustrated on
a case study in the section “Results and Discussion,” where a number
of models is proposed to describe the kinetics of an enzyme, and
where a compromise experiment is designed and evaluated. The
conclusions drawn from these results are listed in the last section.

Methods

Mathematical Model Representation

In what follows, general deterministic models in the form of a set of
(possibly mixed) differential and algebraic equations are considered,
using the following notations:

ẋ(t) = f (x(t), u(t), θ , t); x(t0) = x0, (1)

ŷ(t) = g(x(t)), (2)

where x(t) is an ns-dimensional vector of time-dependent state vari-
ables, u(t) is an nu-dimensional vector of time-varying inputs to the
process, θ is an np-dimensional vector of model parameters taken
from a continuous, realizable set �, and ŷ(t) is an nm-dimensional
vector of measured response variables that are function of the
state variables, x(t). An experiment will be denoted as ξ and is
determined by the experimental degrees of freedom, such as sam-
pling times, initial conditions, and time-varying or constant process
inputs.

Parameter Estimation

The values of the model parameters, which by definition do not
change during the course of the simulation, have to be determined
from experimental data through parameter estimation. It consists of
minimizing the weighted sum of squared errors (WSSE) functional
through an optimal choice of the parameters θ . This can be written
as

θ̂ = arg min
θ∈�

WSSE(θ), (3)

where WSSE(θ) is calculated as

WSSE(θ) =
ne∑
k=1

nspk∑
l=1

�ŷ(ξ k , θ , tl)
′ · Q · �ŷ(ξ k , θ , tl), (4)

and

�ŷ(ξ k , θ , tl) = y(ξ k , tl) − ŷ(ξ k , θ , tl) (5)

represents the difference between the vector of the nm measured
response variables and the model predictions at time tl (l =
1, . . . , nspk

) of experiment ξ k (k = 1, . . . , ne). Furthermore, ne rep-
resents the number of experiments from which data are used to
estimate the model parameters, nspk

represents the number of sam-
pling times in experiment ξ k , which are assumed to be the same
for all measured state variables, and Q is an nm-dimensional square
matrix of user-supplied weighing coefficients. Typically, Q is cho-
sen as the inverse of the measurement error covariance matrix � to
incorporate the measurement uncertainty in the WSSE.8, 16, 17

Optimal Experimental Design for Parameter Estimation

In this section, the methodology used to design experiments to
obtain more accurate parameter estimates, often called optimal
experimental design for parameter estimation (OED/PE), is briefly
described.

Fisher Information Matrix

As stated earlier, the accuracy of the parameter estimates highly
depends on the quality or the information content of the experimental
data from which they are determined. The information content of
ne experiments, ξ 1, . . . , ξ ne

, with regard to the model parameters is
represented by the so-called Fisher information matrix (FIM),7–9, 18

which is calculated as

FIM(ξ 1, . . . , ξ ne
, θ̂) =

ne∑
k=1

FIM(ξ k , θ̂), (6)

where FIM(ξ k , θ̂) is calculated as

nspk∑
l=1

(
∂ ŷ
∂θ

(ξ k , θ , tl)

∣∣∣∣
θ̂

)′
· �(ξ k , tl)

−1 ·
(

∂ ŷ
∂θ

(ξ k , θ , tl)

∣∣∣∣
θ̂

)
. (7)
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A closer look at eq. (7) shows that the FIM is composed of two
components, the parameter sensitivities (∂ ŷ/∂θ) and the measure-
ment error covariance matrix (�). The parameter sensitivity with
respect to a certain state variable expresses how much that state
variable will change when a parameter is slightly perturbed. A state
variable that is highly sensitive to a certain parameter will therefore
contain a lot of information about this parameter, while a variable
that is insensitive to the parameter does not contribute to the infor-
mation content for that parameter. The role of the measurement error
covariance matrix in the calculation of the FIM is rather straightfor-
ward, since it is obvious that a measurement associated with a large
measurement error will contribute less to the information content
than a measurement with a small measurement error.

Central Rationale Behind Optimal Experimental Design for
Parameter Estimation

In general, optimal experimental design is an optimization problem,
where the optimum of a well-defined objective function is sought
by varying the experimental degrees of freedom. The experimental
degrees of freedom, ξ , are restricted by a number of constraints that
define a set of possible experiments, denoted as �. These constraints
are determined by the experimental setup and are specified before
the start of the experimental design exercise.

The Fisher information matrix described in the previous section,
expresses the information content of the ne experiments with regard
to the model parameters, and its maximization is the central rationale
behind optimal experimental design for parameter estimation.7–9, 18

The (ne + 1)th experiment, denoted as ξ �
ne+1, is obtained as

ξ �
ne+1 = arg max

ξ∈�
FIM(ξ 1, . . . , ξ ne+1, θ̂ne ), (8)

with

FIM(ξ 1, . . . , ξ ne+1, θ̂ne ) =
ne∑

k=1

FIM(ξ k , θ̂ne ) + FIM(ξ ne+1, θ̂ne ).

(9)

The information content of the proposed (ne + 1)th experi-
ment, which is represented by FIM(ξ ne+1, θ̂ne ), is thus maximized,
given the information content of the already performed experiments
(FIM(ξ 1, . . . , ξ ne

, θ̂ne )) and the parameter values derived from these

experiments (θ̂ne ). For simplicity, FIM(ξ 1, . . . , ξ ne+1, θ̂ne ) will be
denoted as FIM in the following.

Experimental Design Criteria Based on the FIM

Since the FIM is a matrix, it cannot be maximized as such. There-
fore, several design criteria/objective functions have been proposed
based on the FIM,7, 8, 19, 20 all of which exploit the inversely propor-
tional relationship between the FIM and the parameter estimation
error covariance matrix. This relationship is dictated by the Cramér-
Rao inequality,9, 18 which states that under certain conditions (that
is, uncorrelated white measurement noise), the inverse of the FIM
gives the lower bound of the parameter estimation error covariance
matrix. In this way, properties of the FIM determine the size, shape,
and orientation of the confidence region of the parameter estimates
and thus their accuracy.

In this article, only the so-called D-optimality and modE-
optimality design criteria will be discussed and applied. They are
briefly discussed below.

D-Optimality Design Criterion: maxξ∈� det(FIM). Here, the idea
is to maximize the determinant of the FIM. The latter is inversely
proportional to the volume of the confidence region of the parameter
estimates, and this volume is thus minimized when maximizing
det(FIM). In other words, one minimizes the geometric average
of the variances of the parameter estimates. Moreover, D-optimal
experiments possess the property of being invariant with respect to
any rescaling of the parameters.20, 21

modE-Optimality Design Criterion: minξ∈�
λmax(FIM)
λmin(FIM)

. With this
criterion, the focus is on the minimization of the condition number,
which is the ratio between the largest and the smallest eigenvalue.
The minimum of this ratio is one, which corresponds to the case
where the shape of the confidence ellipsoid is a (hyper)sphere.

The effect of these criteria on the confidence region is illustrated
in Figure 1 for an estimation problem with two parameters (θ1 and
θ2). The size, shape, and orientation of the confidence region, which
is an ellipse in the case of two parameters, are determined by the
eigenvalues and eigenvectors of the FIM. The largest axis of the
confidence ellipse is inversely proportional to the square root of
the smallest eigenvalue (λmin), while the smallest axis is inversely
proportional to the square root of the largest eigenvalue (λmax).

Design of a Compromise Experiment

As stated in the “Introduction”, this article investigates the possibil-
ity to design a compromise experiment, that is, an experiment which
may not be optimal for each individual rival model, but sufficiently
informative to improve the overall accuracy of the parameters of
all rival models. In this section, a method is presented to determine
such a compromise experiment. It is inspired by what is called ker-
nel density estimation or the Parzen window approach.23, 24 After
briefly explaining the theory of kernel density estimation (the next
section), it will be explained how its rationale can be applied to
design a compromise experiment (section “Kernel-Based Method
for Experimental Design”).

Introduction to Kernel Density Estimation

Kernel density estimation23 is a nonparametric method for estimat-
ing the probability density function (pdf) of a random variable from
its independent and identically distributed (i.i.d.) samples.24, 25 The
term nonparametric refers to the fact that it is not necessary to
assume a particular model for the pdf prior to the density estimation
exercise.25

Suppose n samples of a random variable (x) are drawn i.i.d.
according to the (unknown) probability density function p(x).
The kernel density estimation of this probability density function,
denoted as p̂(x), is given by

p̂(x) = 1

n · h
·

n∑
i=1

κ

(
x − xi

h

)
(10)

where xi represents the ith sample, κ represents the so-called
kernel function (or Parzen window), and h represents the smoothing
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Figure 1. Illustration of (a) the D-optimality design criterion that
causes the volume of the confidence region to decrease, and (b) the
modified E-optimality design criterion that causes the shape of the
confidence region to become as circular as possible. Reprinted from
Water Science and Technology, 53(1), 117, with permission from the
copyright holders, IWA.

parameter (or bandwidth parameter). Quite often, κ is taken to be a
standard Gaussian function with zero mean and a variance equal to
one, given by

κ(u) = 1√
2π

· e− 1
2 ·u2

. (11)

Apart from this Gaussian kernel function, other kernel functions
have been proposed, but the choice of the kernel function seems to
be less important than the choice of the smoothing parameter.24

The principle of kernel density estimation and the importance of
the smoothing parameter are illustrated in Figure 2. It is clear that
when the smoothing parameter is too small, an erratic and noisy
estimate of p(x) will be found, while too large values will produce
a very smooth and out-of-focus estimate of p(x). Techniques are
available to determine an optimal smoothing parameter in the con-
text of kernel density estimation, but for this the reader is referred to
refs. 24 and 26 and the citations therein. An approach to determine

the smoothing parameter in the context of experimental design is
presented in the next section.

Kernel-Based Method for Experimental Design

This section explains how the concepts of kernel density estimation
described above can be useful in an experimental design context.
Although this article focuses on its application for those cases
where only the optimal sampling times are determined, the pre-
sented method could in principle be extended to applications where
experimental degrees of freedom of all types (manipulations, initial
conditions, and sampling times) are considered.

Suppose nsp optimal sampling times were determined for each of
the m rival models by optimizing one of the optimal design criteria
described in the previous section. Then, similarly to what is done in
kernel density estimation, a function is defined, given by

p̂(t) =
m∑

i=1

nsp∑
j=1

κ

(
t − tij

h

)
(12)

where tij represents the jth sampling time that was found to be
optimal for model i, h represents the smoothing parameter, and κ

represents the kernel function, for which a Gaussian-like function
is chosen, given by

κ(u) = e−u2
. (13)

Figure 2. Kernel density estimation applied to an illustrative example
for three different values of the smoothing parameter h. The dots rep-
resent six samples from an unknown probability density function, the
dashed lines represent the individual kernel functions, and the full line
represents the estimated probability density function that is calculated
as the sum of the individual kernel functions.
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Figure 3. The black dots represent the optimal sampling times for
model i, whereas the gray ones represents those for model j. The com-
promise sampling times correspond to those points that maximize p̂(t)
(represented by the full line) under the constraint that a minimum time
between two sampling times is required. Their location is indicated by
the white dots.

The reason why the factors 1/(n · h), 1/
√

2π , and 1/2 were
omitted from eqs. (10) and (11) to form eqs. (12) and (13) is that in
kernel density estimation p̂(x) represents an estimate of a probabil-
ity density function for which

∫ +∞
−∞ p(x)dx has to be equal to one.

Since this is not required when applying this method for optimal
experimental design purposes, these factors were omitted. Note that
this does not influence the resulting experiment.

Now, to appoint nsp,c compromise sampling times from the m·nsp

optimal sampling times (nsp,c ≤ m · nsp), the following approach is
adopted. The compromise sampling times are those that maximize
p̂(t), under the constraint that a minimum time interval between two
sampling times is required by the experimental setup. Basically, the
compromise sampling times correspond to those points of p̂(t) that
a horizontal line through max(p̂(t)) encounters while going down,
taking into account the requirement of a minimum time interval. This
is illustrated in Figure 3, where three compromise sampling times
were determined. Note that, in principle, the presented approach
allows the compromise sampling times to coincide.

Choice of the Smoothing Parameter

An interesting feature of the proposed method is the fact that neigh-
boring samples intensify each other, because the associated kernel
functions overlap. The extent to which this intensifying effect occurs
not only depends on the time interval between the individual sam-
pling times but also on the smoothing parameter h. An illustration
of this can be seen in Figure 2, especially when comparing the three
samples on the left for the three different values of h. The intensi-
fying effect is hardly present for small values of h (as in Fig. 2a),
while it does occur for higher values (Figs. 2b and 2c). The latter
can be explained by the fact that higher values of the smoothing
parameter result in broader kernel functions (dashed lines in Fig. 2),
which overlap with those of other samples. For the sharp kernel
functions obtained with the lower value of the smoothing parameter,
no significant overlap occurs.

As stated before, methods are described in literature to determine
the optimal smoothing parameter in the context of kernel density
estimation. However, in this context, we prefer to link this parameter
to the minimum time interval, denoted as tmin. Since tmin is dictated

by the experimental setup, the choice of the smoothing parame-
ter is straightforward, general and objective. More specifically, we
suggest to define h as 0.25 · tmin.

This suggestion is based on a compromise. On the one hand, a
high value for h is desired because the intensifying effect becomes
more apparent (as explained above), but on the other hand, the value
for h must not be too high. The latter is illustrated in Figure 4, where
two sampling times are shown that are located as close to each other
as allowed by the minimum time interval (the black dots). Since both
sampling times are equally important, they should both be selected
as compromise sampling times (indicated by the white dots). This
is the case when a value of 0.25 · tmin is chosen for the smoothing
parameter (see Fig. 4a). Higher values of h result in compromise
sampling times that are different from the optimal ones, whereas
lower values of h will lessen the intensifying effect (see Fig. 4d).

Weighing of the Sampling Times

The contribution of the individual sampling times to the information
content of the experiment varies, and some sampling times are thus
more important/informative than others. With the presented method,
it is possible to give weights to the nsp individual sampling times,
representing their importance. The higher their contribution to the

Figure 4. Kernel density estimation applied to an illustrative example
for three different values of the smoothing parameter h. The time interval
between the two sampling times (black dots) is equal to the minimum
time interval (tmin), and the location of the compromise sampling times
is indicated by the white dots. The lower graph (d) indicates where the
compromise sampling times will be located for values of h between 0
and 1 times the minimum time interval.
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information content of the experiment, the higher their weight. For
this, eq. (12) can be easily modified into

p̂(t) =
m∑

i=1

nsp∑
j=1

wij · κ

(
t − tij

h

)
, (14)

where wij represents the weight of the jth sampling time of the
optimal experiment for model i (tij).

The weight of an individual sampling time is defined relative
to the extent to which a chosen optimality criterion (see the section
“Experimental Design Criteria Based on the FIM”) diminishes when
that sampling time is removed from the set of optimal sampling
times. In the case where the D-optimality design criterion is used
(maximized), the weight can be determined as follows. Suppose ξ �

i
represents the optimal experiment for model i, and ξ i\tj represents
the same experiment, but without sampling time tj . Then, the weight
of this sampling time can be determined as

wij = D
(
ξ �

i

) − D(ξ i\tj )

D
(
ξ �

i

) , 0 ≤ wij ≤ 1, (15)

where D(ξ) represents the D-optimality design criterion value
associated with experiment ξ . When sampling time tj is not impor-
tant with regard to the information content of the experiment,
det(FIM(ξ i\tj )) will only be slightly smaller than det(FIM(ξ �

i ))

and wij will be close to zero. Besides, it would not be realistic that
det(FIM(ξ i\tj )) is larger than det(FIM(ξ �

i )), since information is
lost when a sampling time is discarded. Taking into account that
the eigenvalues and thus the determinant of the FIM cannot take
negative values (the FIM is a positive definite matrix9), the value
of wij cannot be negative.

Contrary to the D-optimality design criterion, the modE-
optimality design criterion has to be minimized. A similar equation
for the calculation of the weights can be formulated as follows:

wij = max


0,

modE
(
ξ i\tj

)
− modE

(
ξ �

i

)
modE

(
ξ i\tj

)

 , 0 ≤ wij ≤ 1,

(16)

where modE(ξ) represents the modE-optimality design criterion
value associated with experiment ξ . When sampling time tj does
not have a significant influence on the value of the modE-optimality
design criterion, the weight will be close to zero. In this case, how-
ever, it cannot be guaranteed that discarding sampling time leads
to a worse (larger) value of the modE-optimality design criterion.
Therefore, wij can in principle take negative values. For the case
study described in this article, this situation did not occur, but if it
occurs one can set the weight of the corresponding sampling time
to zero.

Evaluating the Designed Compromise Experiment

To evaluate the presented method on its capability to design a com-
promise experiment, the following approach was adopted. Since an

optimal experiment was designed for each model, each of these
experiments could have been performed instead of the compromise
experiment. The information that is lost, or gained when doing so,
is used for the evaluation.

Because the information content of an experiment is reflected
by the value of the design criterion, the basis of the evaluation
lies in the comparison of these criterion values. In this respect, it
is important to realize that the information content or the qual-
ity of an experiment with regard to the parameters of a particular
model can be compared with that of another experiment, but it is
not meaningful to compare design criterion values from different
models.

When the D-optimality criterion is used, the criterion values
are calculated for each of the D-optimal experiments (ξ �

j , with
j = 1, . . . , m), and these are compared with the criterion value asso-
ciated with the compromise experiment (ξ c). The ratio between
these criterion values, denoted as �Dij , is eventually used for the
evaluation and is calculated as

�Dij = D(mi, ξ c)

D
(
mi, ξ

�
j

) , (17)

where D(mi, ξ) represents the D-optimality criterion value for model
mi associatated with experiment ξ .

Since a higher information content is represented by a higher
value of the D-optimality design criterion, it holds that �Dij > 1
when the compromise experiment contains more information with
regard to the parameters of model mi than the optimal experiment
for model mj (ξ �

j ). In other words, when �Dij > 1, the estimates
of the parameters of model mi should be more accurate when the
compromise experiment is performed instead of experiment ξ �

j .
For the modE-optimality design criterion, which has to be

minimized, smaller criterion values are associated with better exper-
iments. The expression used to quantify the designed compromise
experiment is therefore given by

�modEij = modE
(
mi, ξ

�
j

)
modE(mi, ξ c)

, (18)

where modE(mi, ξ) represents the value of the modE-optimality
design criterion for experiment ξ with regard to the parameters
of model mi. Since a lower modE-optimality design criterion
corresponds to a better experiment, �modEij > 1 when the com-
promise experiment (ξ c) is preferred to the optimal experiment for
model j (ξ �

j ) with regard to the estimation of the parameters of
model mi.

Optimization Algorithms

Both parameter estimation and optimal experimental design are
optimization problems. To find the optimum, the use of optimiza-
tion algorithms is required. In this work, the SIMPSA optimization
algorithm proposed by Cardoso et al.27 was used. This algorithm
combines the nonlinear simplex28 and the simulated annealing algo-
rithm.29 For more information on these optimization algorithms, the
reader is referred to the cited papers.

Journal of Computational Chemistry DOI 10.1002/jcc
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Results and Discussion

In this section, the experimental design concepts introduced in the
previous section will be illustrated in a relatively simple case study,3

where nine models are proposed to describe the kinetic behavior of
the enzyme glucokinase (glk, EC: 2.7.1.2). This enzyme catalyzes
the conversion of glucose (GLU) and ATP to glucose-6-phosphate
(G6P) and ADP, which is the first reaction of the glycolysis pathway.

General Model

Before describing the different kinetics, a general model for the
enzymatic conversion process is formulated. For this, it is assumed
that the experimental setup allows one to give a pulse of glucose,
ATP, and phosphoenolpyruvate (PEP), or a mixture thereof.

The volume of the reaction vessel [L], denoted as V, is deter-
mined by the flow rate of the pulse [L/s], denoted as Fp, and by the
sampling volume and frequency. However, in this example, the sam-
pling volume will be neglected and the volume can thus be described
by

dV

dt
= Fp. (19)

For the concentration of glucokinase [mg/L], denoted as GLK,
only a dilution effect is considered, and inactivation of the enzyme
is thus neglected. Given the fact that a typical experiment ends after
20 min, this is a reasonable assumption. The resulting equation for
describing the enzyme concentration is given as

dGLK

dt
= −Fp

V
· GLK. (20)

The equations used to describe the other state variables (all of
which are expressed in mM) are given as:

dGLU

dt
= Fp

V
· (GLUp − GLU) − vglk, (21)

dATP

dt
= Fp

V
· (ATPp − ATP) − vglk, (22)

dG6P

dt
= −Fp

V
· G6P + vglk, (23)

dADP

dt
= −Fp

V
· ADP + vglk, (24)

dPEP

dt
= Fp

V
· (PEPp − PEP). (25)

Here, GLUp, ATPp, and PEPp represent the concentrations [mM]
of glucose, ATP and PEP in the pulse, respectively, and vglk rep-
resents the velocity equation describing the kinetic behavior of
glucokinase [mM/s].

Rival Models

The conversion catalyzed by glucokinase is a bi-reactant system.30

Two reaction mechanisms are possible for such a system: random
and ordered. In a random bi-reactant system, the order in which

the two substrates bind does not matter, whereas in an ordered bi-
reactant system one of the substrates has to bind to the enzyme
first, before the second substrate can bind and the reaction can take
place. In addition, it was recently suggested that glucokinase may
be inhibited by PEP.31

Based on these considerations, nine models were defined to
describe the enzyme kinetics.30 The models differ in the equation
used to describe the enzyme kinetics, each of which is based on
a particular hypothesis of how the enzyme works. Although the
kinetic equation is different for each rival model, each one is of the
following form:

vglk = k · GLK ·
GLU
KGLU

· ATP
KATP

ϕ(GLU, ATP, PEP)
, (26)

where the parameter k expresses the maximum specific reaction rate
[U/mg], where one unit is defined as that amount of enzyme that
catalyzes one µmol of substrate in 1 min. The part that is different
for each rival model is represented by ϕ(GLU, ATP, PEP).

For models m1, m2, and m3, it is assumed that the reaction mecha-
nism is random. With regard to the inhibition by PEP, three scenarios
are possible (also for the other models described further on): there
is no inhibition by PEP [eq. (27)], PEP inhibits the binding of ATP
[eq. (28)], and PEP inhibits the binding of glucose [eq. (29)]. This
results in the following equations for ϕ(GLU, ATP, PEP):

1 + GLU

KGLU
+ ATP

KATP
+ GLU

KGLU
· ATP

KATP
, (27)

1 + GLU

KGLU
+ ATP

KATP
+ PEP

KPEP
+ GLU

KGLU
· PEP

KPEP
+ GLU

KGLU
· ATP

KATP
,

(28)

1+ GLU

KGLU
+ ATP

KATP
+ PEP

KPEP
+ ATP

KATP
· PEP

KPEP
+ GLU

KGLU
· ATP

KATP
. (29)

For the other six models, an ordered reaction mechanism is
assumed. For models m4, m5, and m6, it is assumed that glucose is
the first binding substrate, which results in the following equations
for ϕ(GLU, ATP, PEP):

1 + GLU

KGLU
+ GLU

KGLU
· ATP

KATP
, (30)

1 + GLU

KGLU
+ GLU

KGLU
· PEP

KPEP
+ GLU

KGLU
· ATP

KATP
, (31)

1 + GLU

KGLU
+ ATP

KATP
· PEP

KPEP
+ GLU

KGLU
· ATP

KATP
. (32)

The equations associated with models m7, m8, and m9 are similar,
but ATP is assumed to be the first binding substrate. The equations

Journal of Computational Chemistry DOI 10.1002/jcc



A Kernel-Based Method to Determine Compromise Sampling Times 2071

Table 1. Parameters of the Real Model (m�
5) That Were Used to Generate Experimental Data, and the Parameter

Estimates Obtained After Fitting the Rival Models to the Data From the Preliminary Experiment, Together With
the 95% Confidence Intervals and the Corresponding WSSE-Values.

Model k KGLU KATP KPEP WSSE

m�
5 312 0.15 0.13 0.10 –

m1 314.13 ± 90.48 0.0173 ± 0.1135 0.1407 ± 0.0694 – 61.5287
m2 336.14 ± 107.66 0.0451 ± 0.1341 0.1533 ± 0.0772 0.1466 ± 0.2198 57.1080
m3 317.21 ± 93.38 0.0191 ± 0.1162 0.1412 ± 0.0705 0.0091 ± 0.0544 56.9125
m4 307.64 ± 49.17 0.1299 ± 0.8481 0.1245 ± 0.0441 – 61.2821
m5 312.41 ± 51.28 0.2011 ± 0.9320 0.1207 ± 0.0461 0.1261 ± 0.2145 56.9285
m6 319.87 ± 55.23 0.3112 ± 1.0616 0.1182 ± 0.0491 0.1076 ± 0.3577 57.1491
m7 412.58 ± 180.30 0.0099 ± 0.1706 27.9603 ± 464.53 – 94.2223
m8 428.11 ± 236.59 0.0148 ± 0.2146 19.4047 ± 265.68 8.7458 ± 127.33 77.5805
m9 543.60 ± 438.34 0.1102 ± 0.3893 3.6812 ± 9.2598 0.0127 ± 0.0327 88.2185

for ϕ(GLU, ATP, PEP) are given by:

1 + ATP

KATP
+ GLU

KGLU
· ATP

KATP
, (33)

1 + ATP

KATP
+ GLU

KGLU
· PEP

KPEP
+ GLU

KGLU
· ATP

KATP
, (34)

1 + ATP

KATP
+ ATP

KATP
· PEP

KPEP
+ GLU

KGLU
· ATP

KATP
. (35)

Real Model and Data Generation

According to literature,31, 32 the reaction mechanism of glucokinase
is ordered, with glucose as first binding substrate, and PEP inhibiting
the binding of ATP to the enzyme. Based on these considerations,
the fifth model was chosen as the real or true model (m�

5). This
model was used to generate experimental data by simulating the
experiment using the parameter values tabulated in Table 1, and by
adding random noise to mimic the measurement error. The standard
deviation of the measurements were calculated in the same way as

Figure 5. Preliminary experiment simulated with the real model (m�
5) (- -) and the experimental data (•)

obtained from it.
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Figure 6. Optimal sampling times (•) found for the case where the D-optimality design criterion was
optimized. The graph at the bottom was obtained by plotting the ten optimal sampling times of the nine
individual models on the same axis.

suggested by Ternbach et al.:15

σy = ŷ · ςy ·

1 + 1

ŷ
lby

+
(

ŷ
lby

)2


 . (36)

Here, ςy represents a constant minimal relative error, and lby

represents the lower accuracy bound on the measurement of y. In
this way, the standard deviation of the measurements is proportional
to the value of ŷ, but increases when the latter approaches the lower
accuracy bound on the measurement.

Preliminary Experiment

To initiate the case study, a preliminary experiment was defined and
performed in silico. For this experiment, the volume of the reaction
vessel was set to 10 mL, and the initial glucokinase concentration
was set such that 5 units were present in the reaction mixture. Fur-
thermore, it was assumed that no G6P, ADP and PEP were present at
the start of the experiment, and the initial concentrations of glucose
and ATP were set to 1.5 and 0.5 mM, respectively.

During the experiment, two pulses were given, for both of which
the volume was equal to 1 mL. The first pulse was given five minutes
after the start of the experiment, and only contained ATP. The ATP
concentration was chosen such that the ATP concentration in the
reaction mixture was raised to 1.5 mM. The second pulse, given

ten minutes after the start of the experiment, contained glucose and
PEP, and their concentrations were chosen such that the resulting
concentrations were 1.5 and 0.1 mM, respectively.

The experiment stopped after 20 min, and 10 measurements of
GLU, ATP, G6P, and ADP were taken in duplicate (see Fig. 5).
The minimal relative errors (ς) were arbitrarily set to 0.05 for all
measured state variables, and the lower accuracy bounds on the
measurements were defined as 0.1 mM.

Parameter Estimation

The parameters of all rival models were estimated using the data
from this preliminary experiment (Fig. 5), and using the optimiza-
tion algorithm described in the section “Optimization Algorithms”.
Since negative parameter values do not make sense, the lower
bounds were set to zero. The upper bounds were set to 1000
U/mg for parameter k, 2 mM for parameter KGLU, 50 mM for
parameter KATP, and 25 mM for parameter KPEP. The results of
this parameter estimation exercise are shown in Table 1. From
these results, one can conclude that the accuracy of the parame-
ter estimates is quite low, indicating that it may be beneficial to
perform a compromise experiment to increase the accuracy of the
parameter estimates prior to the start of the model discrimination
procedure.
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Figure 7. Optimal sampling times (•) found for the case where the modE-optimality design criterion was
optimized. The graph at the bottom was obtained by plotting the ten optimal sampling times of the nine
individual models on the same axis.

Optimal Experimental Design for Parameter Estimation

For each rival model, an experiment was designed to accurately
estimate its parameters. The experimental degrees of freedom were
chosen as in the preliminary experiment, except for the ten sampling
times, which were optimized. This experimental design exercise was
performed both for the case where the D-optimality design criterion
was optimized, and for the case where the modE-optimality design
criterion was used, the results of which are shown in Figures 6
and 7, respectively. In the following, a compromise experiment
with ten sampling times is designed for both cases, based on the
corresponding optimal experiments.

Compromise Experiment Obtained From D-Optimal
Experimental Designs

This section describes the results for the case where the D-optimality
design criterion is optimized (maximized). To clearly illustrate the

Figure 8. Weighted kernel functions associated with the D-optimal
sampling times for model m1.

different steps of the methodology, these results will be discussed in
more detail than the results for the case where the modE-optimality
design criterion is used (the next section).

Based on the D-optimal experiments corresponding to the indi-
vidual models (shown in Fig. 6), the weighted kernel functions were
determined after weighing the sampling times as explained in the
section “Weighing of the Sampling Times”. As an example, the
kernel functions associated with the D-optimal sampling times for
model m1 are shown in Figure 8. This figure clearly illustrates that
the importance of the individual sampling times with regard to the

Figure 9. Trajectory of p̂(t) for the case where the D-optimality design
criterion is applied, and illustration of how the compromise sampling
times (◦) were obtained from it. The optimal sampling times for the
different models are represented by the black dots (•).
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Figure 10. Comparison of the D-optimality design criterion values obtained when performing the com-
promise experiment, with those that would be obtained when the optimal experiments for the individual
models were performed instead. The ratio between these criterion values is shown in the figure for each
model, and this for the optimal experiments associated with models m1 (black bars) to m9 (white bars).

information content of the experiment differs, and that it makes
sense to weigh the different sampling times.

The weighted kernel functions associated with the different mod-
els are used to calculate p̂(t) according to eq. (14), and the resulting
trajectory of p̂(t) is shown in Figure 9. The compromise sampling
times are determined from this trajectory as explained in the section
“Kernel-Based Method for Experimental Design”, and their location
is indicated by the white dots. One can see that the optimal sampling
times are located in four groups, and that the compromise sampling
times are (not surprisingly) spread over these groups as well. An
interesting observation in Figure 6 is that the optimal experiments
for models m7 to m9 contain sampling times in the first minute of the
experiment, while this is not the case for models m1 to m6. The fact
that this region is important for one third of the models is reflected
in the compromise experiment, where one of the sampling times is
put in this region. This example clearly illustrates that the presented
method considers the optimal sampling times for each of the models
when designing the compromise experiment.

The capability of the presented method to design a compromise
experiment was evaluated as explained in the section “Evaluating the
Designed Compromise Experiment”. The results of this evaluation
are presented in Figure 10. For each model mi, the value of �Di1 is
represented by the black bar (ξ �

1), and the bars become increasingly

white as the model number increases (ξ �
1 → ξ �

9). To present the
results in a systematic and easily interpretable form, the values of
�Dij are represented on a logarithmic scale. In this way, it is easy
to see when �Dij > 1. Some interesting observations are discussed
below.

The results for model m1, for example, show that �D1j < 1
for experiments ξ �

1, ξ �
3 and ξ �

4, which indicates that these experi-
ments contain more information with regard to the parameters of

Figure 11. Trajectory of p̂(t) for the case where the modE-optimality
design criterion is applied, and illustration of how the compromise sam-
pling times (◦) were obtained from it. The optimal sampling times for
the different models are represented by the black dots (•).
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Figure 12. Comparison of the modE-optimality design criterion values obtained when performing the
compromise experiment, with those that would be obtained when the optimal experiments for the individual
models were performed instead. The ratio between these criterion values is shown in the figure for each
model, and this for the optimal experiments associated with models m1 (black bars) to m9 (white bars).

model m1 than the compromise experiment. For the other optimal
experiments, this is not the case and the compromise experiment
is preferred. If one would perform ξ �

4 instead of the compromise
experiment, the information content would indeed be higher for
model m1, but it would be lower for the other models (except for
model m4, of course). The latter can be seen when comparing the
bars corresponding to ξ �

4 for the different models. Similar observa-
tions can be made for the other models/optimal experiments, which
clearly shows the ability of the presented method to design an exper-
iment with the characteristics of a compromise experiment. That the
compromise experiment is not optimal for the individual models is a
direct result of the fact that the timings of the optimal sampling times
are different for the individual models (see Fig. 6). Yet, the com-
promise experiment seems to be sufficiently informative to improve
the overall accuracy of the parameter estimates.

Compromise Experiment Obtained From modE-Optimal
Experimental Designs

This section describes the results for the case where the modE-
optimality design criterion is optimized (minimized). From Figure 7,
one can see that the optimal sampling times are not located in distinct
groups as was the case for the other criterion (see Fig. 6). This makes
the exercise more challenging than the previous one.

The trajectory of p̂(t) and the compromise sampling times
derived from it are shown in Figure 11. The results of the evalu-
ation are presented in Figure 12, and show that the capability of
the presented method to design a compromise experiment is at least
as good as for the case where the D-optimality design criterion was
used. Here too, it is clear that the presented method leads to an exper-
iment with the characteristics of a compromise experiment. For each
model, some of the optimal experiments are preferred to the compro-
mise experiment (�modEij < 1), and vice versa (�modEij > 1). The
results also show that for some of the models, a significant amount of
information is lost when an optimal experiment is performed instead
of the compromise experiment. For instance, if experiments ξ �

7, ξ �
8,

or ξ �
9 were performed, a substantial amount of information would

be lost with regard to the parameters of models m1 to m6, while the
gain in information for models m7 to m9 is not that large.

Dependence of the Experimental Designs on the
Parameter Estimates

The values of the D-optimality design criterion shown in Figure 10
represent the expected information content of the designed exper-
iments. As explained in the section “Central Rationale Behind
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Figure 13. Comparison of the D-optimality design criterion values obtained after performing the com-
promise experiment and re-estimating the parameters, with those that were obtained when the optimal
experiments for the individual models were performed instead. The ratio between these criterion values is
shown in the figure for models m1 (black bars) to m9 (white bars), and this for each optimal experiment.

Optimal Experimental Design for Parameter Estimation”, the lat-
ter is assessed based on the FIM. For linear models, the parameter
sensitivities (∂ ŷ/∂θ) are, by definition, independent of the parame-
ters to be estimated. Hence, the FIM is independent of the parameter
estimates as well [eq. (7)]. However, for nonlinear models (as the
ones used in this article), this is not the case, and the FIM, as well
as the design criteria derived from it, are dependent on the val-
ues of the parameter estimates available at the experimental design
step. Thus, at the start of a modelling exercise, when the param-
eter estimates are still uncertain, the designed experiment may be
less informative/optimal than expected, and the resulting param-
eter estimates may not be that accurate after all. Therefore, the
designed experiments are often called locally optimal instead of
optimal.19

This is illustrated for the case where the D-optimality design
criterion is used. A similar figure as Figure 10 was made after per-
forming the ten different experiments in silico (ξ c and ξ �

j ), and using
the data from these experiments to re-estimate the parameters of
each of the nine models (Fig. 13). As expected from the discussion
above, the results shown in Figure 13 show that the values for �Dij

are not entirely the same as the ones presented in Figure 10, which
indicates that the parameter estimates changed after re-estimating
them.

Nevertheless, the overall accuracy of the parameter estimates
has improved by performing the compromise experiment. This can
be concluded from Table 2, in which the parameter estimates and
their corresponding 95% confidence intervals are reported. Note,
however, that the covariance or correlation between the parame-
ter estimates is not considered in the calculation of the confidence
intervals. A better picture of the uncertainty (or accuracy) of the
parameter estimates can be obtained from Figure 13. Since the D-
optimality criterion values are proportional to the volume of the
confidence region of the parameter estimates (as explained in the
section “Experimental Design Criteria Based on the FIM”), they
can also be interpreted as an overall measure for the accuracy of the
parameter estimates.

Conclusions

In this article, a method was presented to design an experiment to
simultaneously improve the accuracy of the parameter estimates
of several rival models. The method is inspired by kernel density
estimation and uses the optimal sampling times for the individual
models to design a compromise experiment, which is an experiment
that is not optimal for any of the individual models, but sufficiently
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Table 2. Parameters of the Real Model (m�
5) That Were Used to Generate Experimental Data, and the Parameter

Estimates Obtained After Fitting the Rival Models to the Data From Both the Preliminary Experiment and the
Compromise Experiment, Together With the 95% Confidence Intervals and the Corresponding WSSE-Values.

Model k KGLU KATP KPEP WSSE

m�
5 312 0.15 0.13 0.10 –

m1 356.75 ± 26.76 0.0383 ± 0.0191 0.2275 ± 0.0304 – 506.14
m2 328.35 ± 22.16 0.0332 ± 0.0177 0.1504 ± 0.0245 0.1182 ± 0.0273 128.50
m3 323.27 ± 20.49 0.0252 ± 0.0163 0.1458 ± 0.0230 0.0059 ± 0.0038 126.58
m4 341.31 ± 18.64 0.1930 ± 0.0891 0.1894 ± 0.0189 – 503.37
m5 317.09 ± 14.99 0.2063 ± 0.1097 0.1264 ± 0.0172 0.0945 ± 0.0219 128.78
m6 322.97 ± 15.62 0.1759 ± 0.1043 0.1351 ± 0.0252 0.0293 ± 0.0141 137.27
m7 583.38 ± 123.24 0.0095 ± 0.0618 49.9430 ± 315.47 – 1362.41
m8 358.86 ± 36.15 0.0034 ± 0.0329 40.4657 ± 394.03 17.6839 ± 174.29 630.45
m9 459.68 ± 66.39 0.0406 ± 0.0489 5.7254 ± 6.5114 0.0026 ± 0.0028 817.53

informative to improve the overall accuracy of the parameters of all
rival models. The fact that the contribution of the individual sam-
pling times to the information content of the experiment varies, and
some sampling times are thus more important/informative than oth-
ers, was taken into account. Although the rationale of the presented
approach could in principle be applied to all types of experimental
degrees of freedom (manipulations, initial conditions and sampling
times), this article was restricted to the optimization of sampling
times.

The presented method was illustrated by applying it to a case
study where nine rival models are defined to describe the kinetics
of an enzyme-catalyzed reaction (glucokinase). The capability of
the kernel-based method to design compromise experiments was
evaluated, and the results of this evaluation clearly showed that the
presented method is capable to design compromise experiments.
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