

Wastewater treatment plant influent disturbance models

K.V. Gernaey¹, L. Benedetti², LI. Corominas³, X. Flores-Alsina³, U. Jeppsson⁴, G. Langergraber⁵, C. Rosen⁶, P. A. Vanrolleghem³

¹ **PROCESS**, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark ² **BIOMATH**, Ghent University, Ghent, Belgium

³ model EAU, Département de génie civil et génie des eaux, Université Laval, Québec (QC), Canada

⁴ Department of Industrial Electrical Engineering and Automation (IEA), Lund University, Lund, Sweden

⁵ BOKU, Institute for Sanitary Engineering and Water Pollution Control, University of Natural Resources and Applied Life Sciences, Vienna, Austria ⁶ Veolia Water Solutions & Technologies, Malmö, Sweden

The objective of this work is to present different concepts that have been developed over the past years for generating dynamic WWTP influent flow rate and load scenarios.

Problem: Dynamic plant inputs are a necessity to obtain a realistic picture of the simulated plant performance; normally measurements with the desired frequency and quality are not available.

Solution: Dynamic influent flow rate data can be generated by means of Fourier series (e.g. Langergraber *et al.*, 2008) a more complex phenomenological model (e.g. Gernaey *et al.*, 2005) or a very complex and detailed deterministic model of the complete catchment area (e.g. Hernebring *et al.*, 2002).

