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The state of the art tools for modeling metabolism, typically used in the domain of meta-
bolic engineering, were reviewed. The tools considered are stoichiometric network analysis
(elementary modes and extreme pathways), stoichiometric modeling (metabolic flux analysis,
flux balance analysis, and carbon modeling), mechanistic and approximative modeling,
cybernetic modeling, and multivariate statistics. In the context of metabolic engineering, one
should be aware that the usefulness of these tools to optimize microbial metabolism for over-
producing a target compound depends predominantly on the characteristic properties of that
compound. Because of their shortcomings not all tools are suitable for every kind of optimiza-
tion; issues like the dependence of the target compound’s synthesis on severe (redox)
constraints, the characteristics of its formation pathway, and the achievable/desired
flux towards the target compound should play a role when choosing the optimization strategy.
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Introduction

The well-established chemical synthesis routes face,
although the era of the oil-based society has not come to an
end yet, more and more competition from industrial biotech-
nological alternatives for the production of an increasing
number of compounds, due to, e.g., environmental concerns
and the increasing scarcity of oil. Whereas in the past micro-
organisms were typically used for the production of stereo-
chemical1 and complex molecules, e.g., antibiotics,2,3 nowa-
days they even become an interesting alternative for many
bulk chemicals. To develop an industrial biotechnological
process that can compete with the more mature chemical
synthesis routes, there are four critical development phases:
the choice of the favourite micro-organism, metabolic engi-
neering, scaling-up, and downstream processing. The second
phase in the development of an economically viable indus-
trial biotechnological process is the optimization of the
micro-organism itself using a wide range of both experimen-
tal and mathematical techniques.

To this end, due to the complexity of microbial metabo-
lism, more and more metabolomic, proteomic, transcrip-
tomic, and genomic data are collected,4–7 which appear to be
valuable to steer the process of genetic engineering with a
view to the overproduction of a target compound. Indeed,

these data help to elucidate the flux distribution, to determine
the flux controlling reactions, and to yield insight in the reg-
ulation of metabolism.

In addition to these experimental techniques, mathematical
methods are developed and commonly applied to interpret
and to extract information from this pile of data and to iden-
tify genetic targets for the overproduction of a target com-
pound (Table 1). In this context steady-state20 and dynamic
metabolic modeling,21 multivariate statistics,22–24 graph
theory,25 and neural networks are used to unravel microbial
behavior.

Finally, the development of genetic toolboxes consisting
of promoter libraries22,26,23 and strategies for gene knock-
outs, knock-ins, knock-downs, and knock-ups,27 and the
advent of functional genomics28,29 have allowed the directed
improvement of cellular properties in view of optimizing the
production host. After some iterative rounds of genetic modi-
fication and host evaluation results this hotchpotch of techni-
ques into the development of a host with improved
performance.

Such a systematic approach is obvious as the vast variety
of biochemical pathways micro-organisms dispose of, in
order to fulfil their growth and reproduction requirements
under a wide range of environmental conditions, renders
them hard to fathom. A thorough understanding of the regu-
lation of microbial processes is however a conditio sine qua
non for the rational design of bioprocesses, as a disturbance
in one part of metabolism can trigger a series of reactions on

Correspondence concerning this article should be addressed to
J. Maertens at Jo.Maertens@biomath.UGent.be.

VVC 2010 American Institute of Chemical Engineers 313



all levels of regulatory control and in all parts of metabo-
lism. Indeed, in complex metabolic networks it is often a fu-
tile avocation to ad hoc predict the impact, both qualitatively
and quantitatively, of a genetic intervention.30 Hence, the
popularity of models for metabolic engineering purposes. A
concise overview and a critical evaluation of the popularly
used tools in this development phase will be given below
(Figure 1; Table 2).

Construction of a Stoichiometric Model

The reconstruction of genome-scale metabolic network
models relies on assembling various sources of information
about all the biochemical reactions in the network (Figure
2). A variety of data sources can be used to synthesise a list
of chemical reactions that form an organism’s metabolic net-
work. The principal data sources are biochemistry, genomics,
physiology, and indirect information, and in silico data. To
this end, numerous databases can be consulted to collect the
necessary data:

Genome annotation

Since extensive biochemical information is only available
on a few organisms, reconstruction relies heavily on the
annotated genome sequence. ORFs are identified on the
genomic sequence, then assigned a function. This annotation
can be achieved using experimental methods (gene cloning
and expression or gene knock-out) or more commonly by
comparing the sequence homology to genes of known func-
tion in other organisms. In silico annotation methods typi-
cally lead to the functional assignment of 40–70% of the
identified ORFs on a freshly sequenced microbial genome.
New and improved methods continue to be developed for ge-

nome annotation. For example, functions of gene products
may be inferred from protein–protein interactions, transcrip-
tomics, phylogenetic profiles, protein fusion, and operon
clustering (Table 3). A genome-scale metabolic network can
be reconstructed from the annotated sequence.46–48 To pro-
duce high-quality, well-curated reconstructions one still has
to manually verify all the components and links in a net-
work, since there are often subtle differences even between
related organisms. Many Web resources are available for
this purpose (Table 3).

Publicly available sources of sequence data

There are several publicly available databases that contain
genomic data (Table 3). The comprehensive microbial
resource (CMR) provides tools for the analysis of 63 anno-
tated genome sequences, both individually and collectively.
Another database that maintains many microbial genomes is
the genomes on-line database (GOLD) site.

Biochemical data

Direct biochemical information is the most reliable source
for the presence of a reaction in an organism. Biochemical
data also yields the reaction stoichiometry and whether a
reaction is reversible. Collections of biochemical data on an
organism’s metabolism is often found in review articles and
more recently in whole volumes that are focused on the biol-
ogy of a single organism.

Enzyme commission numbers

E.C. numbers are used to systematically characterize enzy-
matic reactions (http://www.chem.qmul.ac.uk/iubmb/enzyme/).
They have been established to unambiguously classify reac-
tions, which is needed because so many enzymes have ambig-
uous and duplicate names across organisms. A classification
scheme similar to the E.C. system is being developed for
transport reactions. Unfortunately, there is no similar system
for genes, which have the same problem of ambiguous and
duplicate names. Thus, the curation of gene annotation infor-
mation for a reconstruction can be quite laborious.

Protein databases

Swiss-Prot (http://us.expasy.org/sprot/) is a very useful
source for examining particular protein or reaction assign-
ments in detail and is considered a standard for biochemical
information because it is so well-curated. It contains litera-
ture references, sequences, functional assignments, and other

Figure 1. Modeling with a view to target identification in metabolic engineering.

Table 1. Target Identification Relying on Metabolic Modeling

Model-Based
Optimization Method

Production
Host

Target
Compound

Elementary modes E. coli L-methionine8

C. glutamicum L-methonine8

Flux balance analysis E. coli succinic acid9

M. tuberculosis mycolic acid10

S. cerevisiae succinic acid11

S. cerevisiae glycerol11

S. cerevisiae vanillin11

E. coli lycopene12

E. coli L-threonine13

E. coli L-valine14

E. coli succinic acid15

Partial least squares E. coli phenylalanine16

Trichoderma sp. cellulase17

Dynamic metabolic modeling E. coli carnitine18,19
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useful information, all specific to the organism being exam-
ined. If the presence of a protein in an organism is uncertain,
but a page is found for it on Swiss-Prot, one can be fairly
sure that the protein has been characterized and that litera-
ture references are available. TrEMBL contains new entries
to Swiss-Prot that have not yet been curated.

Gene–protein–reaction (GPR) associations

When associating genes to reactions, and vice verse, it is
important to remember that not all genes have a one-to-one
relationship with their corresponding enzymes or metabolic
reactions. Genes may encode subunits of a protein which
catalyse one reaction. One example is the fumarate reduc-
tase. There are four subunits, FrdA, FrdB, FrdC, and FrdD,
without which the enzyme (a protein complex) will not be
able to catalyse the reaction. Conversely, there are genes
that encode so-called promiscuous enzymes that can catalyse
several different reactions, such as transketolase I in the pen-
tose phosphate pathway. Such reactions typically involve
similar chemical transformations of structurally related mole-
cules. These examples highlight the need to keep track of
associations between genes, proteins, and reactions.

Organism-specific sources of information

Several biological databases that integrate genomic and
biochemical data for a particular organism are becoming

available. One of the earliest of such databases is the E. coli
encyclopedia (EcoCyc) database.49 Comprehensive Yeast
Genome Database (CYGD), Yeast Protein Database (YPD),
and Saccharomyces Genome Database (SGD) are some
examples for yeast.

Table 2. Overview of the Model-Based Approaches to Identify Genetic Engineering Targets

Characteristic New Advances Similarities Differences

Elementary modes &
extreme pathways

Convex analysis31,32 Differentiates between ir-
reversible reactions
and reversible
reactions

Stoichiometry No data
Pathway analysis Insight
Underdetermined systems Relies on assumptions

on the P/O-ratio
Metabolic flux analysis (Over)determined systems Identification of principal

nodes
Relies on assumptions on

the P/O-ratio
stoichiometry

Data (HPLC)

Lump reactions Error identification
Balancing Insight

Flux balance analysis (FBA) Underdetermined systems33 Goal function Relies on assumptions on
the P/O-ratio
stoichiometry

Prediction
Linear/nonlinear

programming34

Insight
Constrained FBA Energy balance (EBA)35 Additional constraints

Genetic regulation (ROOM,
MOMA)36,37

No assumptions on
P/O-ratio

Carbon modeling Iterative solution method38 Stoichiometry Iterative solution
methods

Able to resolve parallel
pathways,…

Insight Data (NMR, MS)

Isotopomer balances38

Cumomer balances39

Elementary metabolite
units40

Multiple traces: C,
H, and O

Reduces computa-
tional cost

Approximative and
mechanistic models

Dynamic data Kinetics21 Identifiability issues Kinetics
Overparameterized41 Insight/Prediction

stoichiometry
Studied out of

context
Constant enzyme levels
Kinetics are introduced
Genetic regulation42,43

Focus on a part of the
metabolism21

Cybernetic modeling Goal function44 Variable metabolite and
enzyme levels

Identifiability issues Kinetics

Variable metabolite and
enzyme levels

Concept of ‘‘limited
resources’’

Insight/Prediction Resolution suffi-
cient ?

Concept of limited resources Controller steers cellular
processes45

Cell modeling

Figure 2. Construction of a genome-scale model.
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Stoichiometric Network Analysis

From the early stages of metabolic modeling, stoichiomet-
ric network models have been used to facilitate the choice of
where to intervene genetically. The metabolic network com-
prises the metabolites and the reactions they are involved in,
including formation, degradation, transport, and cellular utili-
zation gathered from databases49–51 and the literature.52 For
every metabolite a mass balance can be derived:

dxi
dt

¼
X
j

sijrj � bi (1)

where sij is the stoichiometric coefficient associated with
flux rj and bi the net transport flux of metabolite xi. Under
pseudo steady-state conditions Eq. 1 will reduce to:

0 ffi
X
j

sijrj � bi (2)

Eq. 2 can be rewritten in matrix notation:

0

b

� �
ffi S� R (3)

where S is the stoichiometric matrix, R is the vector of meta-
bolic fluxes, and b is the vector representing m transport
fluxes over the cell membrane.

Despite success stories of stoichiometric metabolic model
use to identify targets for modification, there have also been
many false positive targets identified by these models. It is
still unclear whether the well-established technique of stoi-
chiometric modeling is fully apt to steer the process of meta-
bolic engineering, since the kinetics and the regulation of the
enzymatic reactions are not accounted for.12,53

Especially for the optimization of the production of
metabolites in primary metabolism that are subject to severe

(redox) constraints, stoichiometric modeling has been shown
to be useful. It is less so for the optimization of minor
pathways.54

Once the metabolic network model is built one can resort
to stoichiometric network analysis, in the absence of data.
Network analysis provides for the identification of elemen-
tary modes and extreme pathways as will be discussed later.

Elementary modes and extreme pathways

Network-based pathway analysis, e.g., identification of el-
ementary modes (EMs) and extreme pathways (EPs) facili-
tates the assessment of network properties. Both of these
methods use convex analysis, a branch of mathematics that
enables the analysis of inequalities and systems of linear
equations to generate a convex set of vectors that can be
used to characterise all of the steady-state flux distributions
of a biochemical network.55

This convex solution corresponds geometrically to a con-
vex polyhedral cone in a n-dimensional space emanating
from the origin. Within this cone lie all possible steady-state
solutions. For convex cones one studies the extreme rays
that correspond to the edges of the cone being half-lines
emanating from the origin. These extreme rays are said to
generate the cone and cannot be decomposed into a nontri-
vial convex combination of any other vectors residing in the
flux cone. Every point within this cone can be written as a
non-negative linear combination of the extreme pathways.56

The number of elementary modes can be greater than the
number of extreme pathways, these elementary modes lie
within the interior of the flux cone generated by the extreme
pathways and are positive combinations of the extreme path-
ways. This creates a situation in which there is a redundancy
in the pathway structure resulting often in a nonunique
decomposition of a steady state flux distribution.56 Both
EMs and EPs have the following properties55:

1. There is a unique set of elementary modes/extreme
pathways for a given network.

2. Each elementary mode/extreme pathway consists of the
minimum number of reactions that is required to exist as a
functional unit, i.e., a collection of reactions obeying to the
steady-state equation (Eq. 3). If any reaction in an elemen-
tary mode/extreme pathway would be removed, the whole
elementary mode/extreme pathway could not operate any-
more as a functional unit. This property has been called
genetic independence and non-decomposability.

Whereas elementary modes are the set of all routes
through a metabolic network consistent with the latter prop-
erties, extreme pathways are the systemically independent
subset of elementary modes (Figure 3); that is, no extreme
pathway can be represented as a non-negative linear combi-
nation of any other extreme pathways.55

Pros and cons for the rational design of bioprocesses—
One thus should be aware that EMs and EPs are related net-
work-based approaches. Though, pretty similar, small differ-
ences do exist:

In contrast with EMs, EPs are not a set of all genetically
independent reactions through a metabolic network, rather
they are the edges of the high-dimensional convex solutions
space and as such are the convex basic vectors. The elemen-
tary modes are a superset of the extreme pathways, including
additional network pathways that meet the specific criteria.
The number of EPs is less than or equals the number of

Table 3. Popularly Used Databases for the Construction of a

Stoichiometric Model

Comparative Genomic Databases
SEED http://seed-viewer.theseed.org/
GenDB http://www.cebitec.uni-bielefeld.de/groups/brf/

software/gendb_info/
GeneQuiz http://swift.cmbi.kun.nl/swift/genequiz/
STRING http://string.embl.de/

DNA Sequence and Genome Annotation Databases
EMBL http://www.ebi.ac.uk/embl/
GenBank (NCBI) http://www.ncbi.nlm.nih.gov/
TIGR http://www.jcvi.org/cms/research/software/
CMR http://cmr.jcvi.org/

Strain Specific Databases
ECOCYC http://ecocyc.org/
Colibri http://genolist.pasteur.fr/Colibri/
GenProtEC http://genprotec.mbl.edu/
CYGD http://mips.gsf.de/genre/proj/yeast/
PyloriGene http://genolist.pasteur.fr/PyloriGene/

Protein and Enzyme Databases
BRENDA http://www.brenda-enzymes.org/
ENZYME
TransportDB http://www.membranetransport.org/
UniProt http://www.uniprot.org/
STRING http://string.embl.de/
KEGG http://www.genome.jp/kegg/

Pathway Databases
KEGG http://www.genome.jp/kegg/
Biocyc http://biocyc.org/
UniPathway http://www.grenoble.prabi.fr/obiwarehouse/

unipathway

316 Biotechnol. Prog., 2010, Vol. 26, No. 2



EMs. The EMs that are additional to the EPs are non-
obvious highly complex combinations of the basic vectors
(EPs).

Being (merely) basic vectors, extreme pathways might
have to be added together to represent a particular flux distri-
bution that cancels out a reversible exchange flux. Such
occurrence complicates the full evaluation of network prop-
erties, such as pathway redundancy and product yields. Con-
versely, elementary modes have a much larger set of vectors
to account for the absence of reversible exchange flux.

Both elementary modes and extreme pathways have been
used to calculate product yields, to evaluate pathway redun-
dancy, to determine correlated reaction sets, and to assess
the effect of gene deletions.55 Carlson et al. (2002)57 and
Kromer et al. (2006)8 used elementary modes for rational
design purposes and Carlson and Scrienc (2003),58 Nookaew
et al. (2007),59 and Schwarts et al. (2007)60 used the concept
of elementary modes in combination with experimental data
for network analysis.

Popularly used objective functions for EMs and EPs to
steer the process of metabolic engineering with a view to
overproduction of a target compound are typically based on
reaction participation, which is a measure that links the
occurrence of a reaction to the production of the target com-
pound.32 Another objective function focusses on the mini-

mum length of EMs or EPs. This measure reflects the
demand for cellular resources for enzyme synthesis to install
a metabolic pathway.32 The physiological interpretation of
the results, see also Figure 4, and their computation for ge-
nome-scale models remain however challenging.63 Though,
progress has been made to deal with the latter.64

Stoichiometric Modeling

In the presence of data, one can resort to steady-state
modeling, e.g., metabolic flux analysis and flux balance anal-
ysis (Figure 5). Eq. 3 can be rewritten as:

0 ffi
Sin 0 0

Scex �Icex 0

Smex 0 �Imex

2
4

3
5 rin

bcex
bmex

2
4

3
5 (4)

where rin represents the intracellular fluxes, bcex and bmex the
net transport fluxes to be calculated and measured, respec-
tively. Sin, S

c
ex, and Smex are the corresponding stoichiometric

matrices and I represents a unity matrix. This equation can
be rewritten as:

0 ffi
Sin 0

Scex �Icex
Smex 0

2
4

3
5

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Wc

rin
bcex

� �
|fflffl{zfflffl}

ac

þ
0

0

�Imex

2
4

3
5

|fflfflfflfflffl{zfflfflfflfflffl}
Wm

bmex
� �|ffl{zffl}
am

(5)

the solution of which is:

ac ffi �W#
c Wmam þ null space Wcð Þf (6)

with W#
c the pseudo inverse of matrix Wc, with the null space

defined as the set of linear independent basis vectors Rn that
fulfil the equation:

WcRn ¼ 0 (7)

and f an arbitrary vector that reflects the indeterminacy of
the system and with as many elements as there are columns

Figure 3. The three extreme pathways and four elementary
modes of the stoichiometric network.

Note that the EM 4 is a non-negative linear combination of
two extreme pathways, i.e., EP2 and EP3.

Figure 4. The 17528 elementary modes of the stoichiometric E.
coli model of Lequeux et al. (2006)61 represented as
!s, calculated by using Metatool 5.0,

62
and pre-

sented in the YX,S, Ysuccinate,S space, with YX,S and
Ysuccinate,S the biomass c�mole

mole

� �
and succinate mole

mole

� �
yields on glucose, respectively.

The arrow indicates the EMs characterized by the optimal flux
distribution, here with respect to maximal Ysuccinate,S.
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in the null space of Wc. The number of independent null
space vectors is equal to:

n� rankðWcÞ (8)

with n the number of fluxes to be calculated.

Metabolic flux analysis

If Eq. 8 ¼ 0 the system is determined and has one unique
solution:

ac ffi �W#
c Wmam (9)

In the case of a determined system without extra measure-
ments (i.e., not redundant), W#

c is simply the inverse of Wc.
Substituting Eq. 9 in Eq. 5 now yields:

Wmam þWc �W#
c Wmam

� � ¼ 0 (10)

Or rewritten, since Eq. 7:

ðWm �W#
c WcWmÞam ¼ 0 (11)

When the system is (partially) overdetermined, the redun-
dant measurements, which are specified by the so-called re-
dundancy matrix: Wm � W#

cWcWm in Eq. 11, can be used for
statistical testing and error analysis. van der Heijden et al.
(1994)65 introduced a method for error detection and analysis
which allows stating whether a model is consistent. If this is
not the case, this error analysis method can be used to iden-
tify erroneous measurements. Removing these erroneous
measurements from the data set improves the chance of a

consistent result. An overview is given by Lequeux et al.
(2006).61

Pros and cons for the rational design of bioprocesses—
Though metabolic flux analysis (MFA) merely yields a snap-
shot of the metabolic state in a particular condition, it might
be of some significance to steer the process of metabolic en-
gineering because it allows identifying principal nodes.
These principal nodes, which are characterized by significant
changes in flux partitioning under different conditions,
should be regarded as potential bottlenecks.20

It should be clear that due to the large variety of meta-
bolic pathways, e.g., parallel pathways, reversible reactions,
and cycles, the system is in general under determined (Eq. 8
[ 0). For example, genome-scale models have been con-
structed, that are typically useful for the design of minimal
media, e.g., for Escherichia coli (931 reactions),52 Saccharo-
myces cerevisiae (1,175 reactions),66 Helicobacter pylori
(388 reactions),67 and Neisseria meningitidis (496 reac-
tions).68 Such genome scale models contain all known reac-
tions, formation, degradation, transport, and cellular
utilization gathered from databases and the literature.

Starting from such genome-scale model the modeller can
opt/has to reduce the metabolic network in order to get an
identifiable system by incorporating as much knowledge,
e.g., prior knowledge about the flux size, and data as possi-
ble. Examples of such data are: metabolomic data, as these
data yield thermodynamic information DrG

0o and conse-
quently information about the reversibility and irreversibility
of certain reactions,69,70 labeled metabolomic data as these
data yield information on split ratios,39,71,72 and transcrip-
tomic data,61,73–75 through the incorporation of additional

Figure 5. Stoichiometric modeling.
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constraints for the metabolic network, e.g., presence of an
enzymatic conversion, to reduce the uncertainty about the
obtained flux distribution. The consequences of the choice
metabolic network on the calculated flux distribution is how-
ever not that well studied.

Flux balance analysis

If Eq. 8 [ 0 the system is under determined and no
unique solution exists. The question then is which of the fea-
sible metabolic states is manifested under that condition.
Flux balance analysis (FBA)33,76 postulates that a metabolic
system exhibits a metabolic state that is optimal under some
criteria. This objective is often expressed as a linear combi-
nation of the fluxes contained in R. The model can then be
formulated as a linear or nonlinear programming problem as
follows:

max J (12)

subject to:

0 ffi S� R� b (13)

ai � ri � bi (14)

where J is the objective function and the boundaries ai and
bi represent known constraints on the minimum and maxi-
mum flux values. Popularly used objective functions are
listed in Table 4.

Pros and cons for the rational design of bioprocesses—
Flux balance analysis allows to rapidly evaluate the effects
of certain genetic modifications, i.e., by adding an additional
constraint (ri ¼ 0) to the metabolic network the effect of a
gene knock-out can be evaluated. The effect of a gene
knock-in on the other hand can be evaluated by adding the
reaction stoichiometry to the set of model equations. To
automate this quest for the optimum a whole set of local and
global optimization algorithms, e.g., simplex,79 genetic algo-
rithms,80 SIMPSA,81 … is available to in silico evaluate the
effect of multiple gene knock-outs and knock-ins.

Though many objective functions have been used, the
optimization of ATP production and the optimization of
growth have been shown to comply best with experimental
observations34 in many micro-organisms. One should how-
ever be aware that the cell’s goal may be different under cer-
tain conditions. The applications of FBA have been many
(Table 1) and the in silico metabolic constraint predictions
can be used to optimize the behavior of interesting mutants.

Tools like OptKnock,82 which identifies multiple gene de-
letion combinations that maximally relate growth objectives
with the production of the desired compound, and Opt-
Gene,11 which facilitates the search for multiple gene dele-
tion combinations using genetic algorithms for complex
metabolic networks, were developed. However, the genetic
toolbox to modify cellular metabolism to oblige a cell to
produce the compound of interest consists of much more
than knock-out procedures.22

Despite success stories of FBA use to identify targets for
modification, there have also been many false positive tar-
gets identified by these models. It is still unclear whether the
well-established technique of stoichiometric modeling is
fully apt to steer the process of metabolic engineering, since
the kinetics and the regulation of the enzymatic reactions are
not accounted for.12,53 Especially for the optimization of the
production of metabolites in primary metabolism that are
subject to severe (redox) constraints, stoichiometric modeling
has been shown to be useful. It is less so for the optimiza-
tion of minor pathways.54

FBA heavily relies on prior knowledge (through the con-
straints introduced in Eq. 14), but at present the knowledge
on the regulatory mechanisms is still lacking and fragmen-
tary.83,84 For example, the determination of intracellular
fluxes depends heavily on the correctness of the assumed
stoichiometry, the determination of fluxes in complex net-
works often requires the inclusion of NADH and NADPH
balances, which are subject to controversial debate.85 The
assumption on the energy metabolism, i.e., YATP, stoichiome-
try of the oxidative phosphorylation (P/O-ratio). These stoi-
chiometric parameters often originate from WT strains and
continuous cultures and may not hold true in cases of highly
engineered strains.86 In addition, in some cases no unique
optimum exists and consequently many metabolic states may
result in the same optimal behavior.87

To reduce the solution space genetic regulation, which
yields additional constraints, can be taken into account as
well.88 These constraints are introduced in a Boolean man-
ner, i.e., a reaction can be present (1) or absent (0). The
genetic regulation is however much more subtle than the on/
off regulation of gene expression so one may wonder, though
good results have been obtained to predict diauxic growth,89

whether equally good results would have been obtained in
the case of simultaneous substrate utilization.

Another option to reduce the solution space is the incorpo-
ration of energetic constraints, next to constraints on certain
reaction rates. To this end, Beard et al. (2002)35 and Nagrath
et al. (2007)90 introduced energy balances to ensure the ther-
modynamic feasibility of the solution, by making use of the
first law of thermodynamics (conservation of energy).

Table 4. Objective Functions Used in FBA

Objective Function Mathematical Analogue Underlying Assumption

Maximize biomass44,76 max vbiomass

vsubstrate
The cell optimizes its biomass yield

Maximize ATP yield33 max vATP
vsubstrate

The cell functions maximally energetic efficient

Minimize substrate consumption77 max vsubstrate
vbiomass

The cell uses the substrate most efficiently to produce biomass

Minimize reaction steps32 min
Pn

i¼1 vi; vi ¼ 0; 1f g The cell optimally uses the cellular resources for enzyme synthesis to install
the network

Maximize ATP per reaction step34 min vATPPn

i¼1
vi
; vi ¼ 0; 1f g The cell produces as much ATP as possible

Minimize redox potential78 min vNADH
vbiomass

The cell uses the available energy as efficient as possible

Minimum norm68 min
Pn

i¼1 v
2
i The cell functions with maximal enzymatic efficiency for cellular growth
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For all reactions the reaction potential can be calculated:

Dl ¼ STl (15)

wherein l represents a m-dimensional vector of chemical
potentials, Dl a n-dimensional vector of reaction potentials,
and S the stoichiometric matrix. The energy balance, is then
given by:

KTDl ¼ 0 (16)

with K the null space matrix of S. This constraint ensures
that the sum of reaction potentials around any cycle of reac-
tions equals zero.35

The second law of thermodynamics yields on the other
hand that a reaction only can take place in the direction of
negative Gibbs free energy of that reaction, DrG, which is
given by:

DrG ¼ DrG
o þ RT ln

Y
x
sMi ;j

Mi
(17)

with xMi
the concentration of metabolite Mi, sMi,j its stoichio-

metric coefficient for reaction j, and DrG
o the standard Gibbs

free energy of the reaction.70,91 The Gibbs free energies of
reaction and the flux direction can then be used to identify
thermodynamically feasible ranges for the Gibbs free ener-
gies of reaction and for the concentration of nonmeasured
metabolites.70

However, it is not because a micro-organism has the
genetic potential that it will just like that perform optimally,
i.e., artificially created mutants are generally not subject to
the same evolutionary pressure that shaped the wild
type.12,36,87 The method of minimization of metabolic adjust-
ment (MOMA) attempts to deal with this issue. Instead of
maximizing biomass production the knock-out mutant, KO,
is believed to initially remain as close as possible to the wild
type optimum, WT, in terms of flux values.36 The objective
function then becomes:

minDðRWT;RKOÞ (18)

with

DðRWT;RKOÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i

ðrWT � rKOÞ2
s

(19)

Another constraint-based method for predicting the meta-
bolic steady state after gene knock-outs is Regulatory on/off
minimization (ROOM).37 This method aims to minimise the
number of significant flux changes with respect to the wild
type. Whereas MOMA provides more accurate predictions
for the mutant directly after the genetic perturbation, ROOM
and FBA more successfully predict the mutant’s behavior af-
ter adaptation to the new genotype.37

An intracellular pseudo steady state can also be assumed
under certain dynamic conditions, because of the relatively
small time constants of cellular processes, e.g., mass action
and the metabolic adaptation to novel conditions, in compar-
ison with processes affecting the observed environmental
conditions. Dynamic FBA, using an instantaneous objective
function, can then be used. For example, to predict the dia-
uxic shift in Escherichia coli.89,92,93 Lee et al. (2008)94 intro-
duced integrated dynamic FBA (idFBA) that dynamically
simulates cellular phenotypes arising from integrated net-
works. This framework uses an integrated stoichiometric

reconstruction of signaling, metabolic, and regulatory proc-
esses. Pseudo steady state conditions are assumed for fast
reactions and slow reactions are incorporated into the stoi-
chiometric formalism in a time-delayed manner. This pseudo
steady state assumption thus allows the use of FBA for mon-
itoring and control of complex bioprocesses.

Carbon modeling

The increasing realization that, using the aforementioned
techniques, large parts of the metabolic network, e.g., parallel
metabolic pathways, metabolic cycles, and bidirectional reac-
tion steps cannot be resolved, has boosted the application of
carbon modeling. The data collected, measured by 1H-NMR,
13C-NMR, or MS instruments, during a carbon labeling
experiment can then help to elucidate the flux distribution.

These carbon models make use of the concept of isotopom-
ers. The isotopomer distribution in a metabolite pool with n
carbon atoms can unambiguously be characterized by 2n num-
bers, each representing the relative amount of one specific
isotopomer. The labeling pattern of these isotopomers is bi-
nary encoded: labeled and nonlabeled carbon atoms are repre-
sented as ones and zeros, respectively. For a two-carbon
molecule c the isotopomer distribution vectors becomes:

Ic ¼
c0
c1
c2
c3

0
BB@

1
CCA ¼

c00
c01
c10
c11

0
BB@

1
CCA (20)

With
P2n�1

i¼0 cðiÞ ¼ 1. The fate of isotopomers is encoded in
isotopomer mapping matrices (IMMs) that hold information
on which product isotopomers evolve from which substrate
isotopomers in a biochemical reaction.95 One IMM is defined
for each pair of substrate and product molecules in a bio-
chemical conversion. Isotopomer distribution vectors (IDVs)
of product molecules can be calculated from the IDVs of sub-
strate molecules by simple matrix multiplication.38 Consider
the following reaction pathway, r1 converts the one-carbon
molecules a and b into c and r2 converts c into d:

a þ b !r1 c !r2 d
� � �� ��
� � �� ��
� � �� ��
� � �� ��

(21)

where labeled and nonlabeled carbon atoms are represented
by the filled spheres (l) and the empty spheres (*), respec-
tively. In matrix notation the isotopomer balance for metabo-
lite c then becomes:

d

c0

c1

c2

c3

0
BBB@

1
CCCA

dt
¼ r1

1 0

1 0

0 1

0 1

0
BBB@

1
CCCA

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
IMMA>C

a0

a1

	 

�

1 0

0 1

1 0

0 1

0
BBB@

1
CCCA

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
IMMB>C

b0

b1

	 


� r2

c0

c1

c2

c3

0
BBB@

1
CCCA ð22Þ
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Assuming an isotopic and metabolic stationary state Eq.
22 can be rewritten as:

c0 : a0 � b0r1 � c0r2 ¼ 0

c1 : a0 � b1r1 � c1r2 ¼ 0

c2 : a1 � b0r1 � c2r2 ¼ 0

c3 : a1 � b1r1 � c3r2 ¼ 0

(23)

The measured multiplet patterns which are determined by
the 13C isotopes in the molecule can be compared with the
simulated signals that can be computed from the isotopomer
distributions (Figure 6). However, since the relationship
between the labeling state and the intracellular flux distribu-
tion is complex and nonlinear it is practically impossible to
find an analytical expression for the intracellular reaction
rates as functions of measurement data. Hence, the flux dis-
tribution has to be computed by minimizing the sum of
squares of the difference between the measurements and the
simulated data.38

Different iterative numerical solution approaches have
been proposed to solve the isotopomer balance equations due
to their apparent nonlinear structure and high dimensional-
ity.38 However, after a suitable variable transformation, the
equations can be solved explicitly. Hereto, the concept of
cumomers has been introduced. Cumomers, or cumulated
isotopomer fractions, are the sum of certain isotopomer fac-
tions of a metabolite. The weight 0 (Eq. 24), 1 (Eqs. 25 and
26), and 2 (Eq. 27) cumomers of metabolite c are defined as:

cxx ¼
X1
i;j¼0

cij ¼ 1 (24)

c1x ¼
X1
i¼0

c1j (25)

cx1 ¼
X1
i¼0

ci1 (26)

c11 ¼ c11 (27)

Or rewritten in matrix notation:

cxx
cx1
c1x
c11

0
BB@

1
CCA ¼

1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

0
BB@

1
CCA

c00
c01
c10
c11

0
BB@

1
CCA (28)

By summing up the equations of all isotopomers belong-
ing to the a certain cumomer the cumomer balances are
computed:

cxx : ax � bxr1 � cxxr2
cx1 : ax � b1r1 � cx1r2
c1x : a1 � bxr1 � c1xr2

c11 : a1 � b1r1 � c11r2

(29)

For the metabolic network, this system of cumomer balan-
ces can then be rewritten in matrix formulation:

1¼0x

0¼1AðvÞ1xþ1bðvÞ
0¼2AðvÞ2xþ2bðv;1xÞ

0¼3AðvÞ3xþ3bðv;1x;2xÞ
(30)

with ix a vector containing the cumomers belonging to
weight i. In this way, the system can be solved for each

weight level independently. Hence, a cascade of linear equa-
tions can be solved.

In general, a large number of isotopomer or cumomer bal-
ances needs to be solved.39 To deal with this issue, Antonie-
wicz et al. (2007)40 introduced the concept of elementary
metabolite units (EMU). Such an EMU of a compound is a
moiety comprising any distinct subset of the compound’s
atoms. The developed framework is based on a highly effi-
cient decomposition method that identifies the minimum
number of information needed to simulate isotopic labeling
within a reaction network, using the knowledge of atomic
transitions occurring in the network. Hence, it requires sig-
nificantly less computation time, enabling the analysis of
labeling by multiple tracers, e.g., 2H, 13C, and 18O.

Pros and cons for the rational design of bioprocesses—To
compute the flux distribution, carbon modeling requires a
nonlinear optimization, which minimizes a quadratic error
function. In such cases, one might, however, get trapped in
local minima, and consequently no guaranty can be given
that the global optimum has been found. In addition, the de-
pendence of the solution on the initial settings (chosen rates)
should be carefully checked, e.g., by performing Monte
Carlo simulations. The consistency check of the ultimate so-
lution remains rather primitive, because in general merely
extracellular exchange rates are used to verify the calculated
flux distribution.96,97

The determination of intracellular fluxes depends heavily on

the correctness of the assumed stoichiometry, the determina-
tion of fluxes in complex networks often requires the inclusion

of NADH and NADPH balances, which are subject to contro-

versial debate.85 The assumption on the energy metabolism,
i.e., YATP, stoichiometry of the oxidative phosphorylation

(P/O-ratio). These stoichiometric parameters often originate

from WT strains and continuous cultures and may not hold
true in cases of highly engineered strains.86 Using 13C tracer

experiments flux analysis can be performed on the basis of

only well established stoichiometric equations and measure-
ments of the labeling state of the intracellular metabolites.85,86

One of the main assumptions of carbon modeling is that
the network stoichiometry is complete. However, this

assumption may not be as trivial as it seems, e.g., many

Figure 6. Solving a carbon model.
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enzymes have a much broader substrate range than consid-
ered98 and the modelled stoichiometric network is only a
gathering of the most important metabolic reactions. Metabo-
lite channelling is another issue which should be carefully
considered in this context. This is a mechanism whereby the

product of an enzymatic reaction is transferred to the next
enzymatic reaction without mixing with the metabolite
pool.98

In addition, despite the increased information content of
the gathered data the parameter sensitivity and identifiability
may remain low. Hence, the need for optimal experimental
design.99 Several software tools for carbon modeling are
(freely) available, e.g.100,101

Because of the cost of labeled substrates there is a clear
tendency towards miniaturization102 and reducing the dura-
tion of the labeling experiment. Hence, the interest in iso-
topic and/or metabolic instationary labeling experiments. In
stead of studying the isotopic steady state, which takes a
long time before it is established, the transient can be studied
both under metabolic stationary and instationary conditions.

Initially, the labeling pattern of the amino acids was meas-
ured, the aforementioned evolutions also resulted in the mea-
surement of the labeling pattern of metabolites in the
glycolysis and TCA cycle. In this case, one has to be careful
since many non-obvious reactions do intervene, e.g., synthe-
sis and degradation of macromolecular compounds (storage
compounds and protein turn) and transamination reactions
have to be taken into account.103 In addition, these reactions
significantly increase the time necessary to reach isotopic
stationary state for these glycolytic and TCA cycle
metabolites.

The value of such isotopic instationary data is huge, e.g.,
the quality of the parameter estimates of kinetic models will
be significantly improved because the information content of
the data collected during 13C-labeling experiments both
under stationary and instationary metabolic state is much

larger than when no labeling is used.104,105 These calcula-
tions are however computationally quite intensive and meth-
ods to render these calculations more feasible will have to
be developed, e.g.106

Mechanistic and Approximative Modeling

Because of the aforementioned limitations of stoichiomet-
ric modeling, kinetic equations have been introduced in met-
abolic models. The general form of the mass balances of
extracellular and intracellular metabolites is now given by
Eq. 31 and Eq. 32, respectively:

dxSi
dt

¼ D x0Si � xSi

� �
� xX
qX

X
j

sMijrj (31)

dxMi

dt
¼
X
j

sMijrj � lxMi
(32)

with xMi
and xSi the concentration of an intracellular metabo-

lite Mi and an extracellular metabolite Si, respectively, sMi j
is

the stoichiometric coefficient of metabolite Mi in reaction j,
rj the rate of reaction j, qX the specific weight of biomass, xX
the biomass concentration, D the dilution rate, x0S the con-
centration of an extracellular metabolite S in the feed, and l
the specific growth rate. Note that xS is expressed per reactor
volume whereas xM is expressed per cell volume. The term
lxM in the mass balances of the intracellular metabolites rep-
resents the dilution effect due to growth.

In mechanistic dynamic metabolic modeling, one can
resort to complex mechanistic equations determined in vitro
to describe the rate equations rj in Eqs. 31 and 32,21,41,107,108

e.g., the popularly used Michaelis Menten kinetics. These
complex in vitro derived kinetics typically contain many
hard to estimate parameters (KPTS,ai

, rmax,PTS, and nPTS,G6P):

rPTS ¼ rmax;PTS
xGLUxPEP

xPYR KPTS;a1 þ KPTS;a2
xPEP
xPYR

þ KPTS;a3xGLU þ xGLU
xPEP
xPYR

� �
1þ x

nPTS;G6P
GSP

KPTS;a4

	 


In approximative modeling, one can resort to nonmechan-
istic kinetics to describe the rate equations rj in Eqs. 31 and
32, e.g., the generalized mass action type power law approxi-
mation (GMA) (Eq. 33),109 the loglinear approximation (Eq.
34),110,111 the linear in metabolite and enzyme levels (Eq.
35),112 and the linlog approximation (Eq. 36).113,114

ln
rj
J0

� �
¼ ln

xE
x0E

	 

þ
Xn
i¼1

e0Mi
ln

xMi

x0Mi

 !
(33)

rj
J0

� 1 ¼ ln
xE
x0E

	 

þ
Xn
i¼1

e0Mi
ln

xMi

x0Mi

 !
(34)

rj
J0

� 1 ¼ xE
x0E

� 1

	 

þ
Xn
i¼1

e0Mi

xMi

x0Mi

� 1

 !
(35)

rj
J0

¼ xE
x0E

� �
1þ

Xn
i¼1

e0Mi
ln

xMi

x0Mi

 ! !
(36)

where the superscript 0 stands for the operating point and xE
the enzyme concentration, e0Mi an elasticity coefficient, and
J0 the steady-state flux. The applied equations are not as
complex as mechanistic rate equations and contain less pa-
rameters to approximate the true kinetics. The rationale
behind this approach is that metabolic redesign does not
require detailed mechanistic models because of the concept of
homeostasis, which implies that the micro-organism keeps its
intracellular metabolite levels approximately constant.115–117

In other words, the extrapolation range of the kinetic meta-
bolic model does not need to be very large, as far as metabo-
lite levels are concerned. This reasoning suggests that one can
safely apply approximative kinetic equations instead of the
detailed mechanistic ones that are valid over a wide range of
concentration levels.
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The metabolic regulation of enzyme activity is, however,
not always that easily to be captured using the aforemen-
tioned kinetic structures, e.g., to describe the biphasic effect
of ATP on phosphoenolpyruvate carboxykinase (PCK) a
fuzzy-logic approach was used by Lee et al. (1999).118

Pros and cons for the rational design of bioprocesses—
Using mechanistic and approximative models, metabolic
control analysis can be used to identify the response and flux
control coefficients of the metabolic network110 and conse-
quently the metabolic engineering targets. Such a flux con-
trol coefficient is a measure of how a change in the level of
an enzyme affects the steady-state flux through that particu-
lar pathway:

CF
i ¼ @J0

@xEi

xEi

J
¼ @ ln J0

@ ln xEi

(37)

Hence, it is a measure of the degree of control exerted by
this enzyme on the steady-state flux.119

One should however be aware that these symboli-
cally110,119 or numerically120 determined coefficients are
merely local properties and consequently the envisaged flux
change may result in a completely different metabolic state,
for which these local findings may be no longer valid. How-
ever, a whole set of local and global optimization algo-
rithms, e.g., simplex,79 genetic algorithms,80 SIMPSA,81 …,
is available to in silico evaluate the modification of enzy-
matic properties and levels. These findings may then be used
to knock-out and knock-in genes, or to directedly evolve
enzymes in order to alter their affinity for the substrate and/
or to modify product inhibition characteristics.

The enormous variety of well regulated metabolic path-
ways impedes a thorough understanding of the regulation of
microbial processes on the metabolomic, proteomic, tran-
scriptomic, and genomic level in a qualitative and quantita-
tive way. Such understanding would be beneficial for the
rational design of bioprocesses, as a genetic or environmen-
tal disturbance in one part of metabolism can trigger a series
of reactions on all levels of regulatory control and in all
parts of metabolism.30 Hence, in many applications, e.g.,
metabolic engineering, ‘‘whole cell modeling’’ is probably
the way to go.121,122

However, since the knowledge about the transcriptional
and translational regulation is still fragmentary, the state of
the art dynamic metabolic models typically focus on the
metabolome, assuming constant proteomic levels. In view of
the extrapolation capacity of these models this is a draw-
back. Hence, in order to comply with the assumption of
steady-state proteome, data for parameter identification have
to be collected during a relatively short period after perturba-
tion, typically within 0.2–180 s.108,123–125

Thus, the calibration of such kinetic models requires highly
dynamic experiments starting from well-defined cultures, with
constant proteomic levels. Hereto, well-defined chemostat or
batch cultures, which are in a pseudo steady-state, are typi-
cally perturbed. Then the metabolic state of the cell prior to
the perturbation, i.e., pseudo steady-state flux distribution, can
be (unambiguously) determined by making use of a pseudo
steady-state model. However, because kinetic metabolic mod-
els typically zoom in on a limited part of the microbial metab-
olism the evolution of the flux distribution under the applied
dynamic conditions is more uncertain.

Because such kinetic metabolic models do not consider
the whole metabolic network (as they typically zoom in on

only a limited part of the microbial metabolism) they typi-
cally contain a number of fluxes toward parts of the metabo-
lism which one is not primarily interested in. However,
when such a model contains two or more of those reactions,
that convert metabolites into nonconsidered cellular frac-
tions. This will result in the untractable disappearance of car-
bon out of the model, which will create some uncertainty
about the flux distribution under the dynamic conditions,
because only indirect, secondary information about the
dynamic evolution of the flux distribution after a perturba-
tion of the metabolism is collected. Only having the informa-
tion of the evolution of unlabeled metabolite concentrations
is insufficient for these aims. Thus, in contrast to steady-state
modeling, where mass balances are essential to verify the ac-
curacy of the calculated fluxes, this check is not performed
in most dynamic metabolic models,21,107,108,126 as the size of
the out fluxes is not exactly known. It should, however, be
clear that modeling the whole metabolism would be a daunt-
ing task as well, because when a perturbation passes through
the metabolic network it broadens and dampens out and the
information content of data collected further on in the net-
work is limited.

To reduce this uncertainty the cofactors might be used as
‘‘closure terms,’’ e.g., the generation of NADPH, might be a
good indicator for the flux through the pentose phosphate
cycle. However, it should be clear that these closure terms
are weak as cofactors intervene in many reactions, which are
also perturbed during a pulse experiment. In addition, model-
ing these cofactors dynamically is not easy at all because
this approach is hampered, for instance, by the inability to
explain the short-term reduction in the pool size of the ade-
nine nucleotides (AXP) after a glucose pulse.107,108 At pres-
ent, it is still unclear what is/are the cause(s) of this
reduction (adaptation would only be responsible for 15% of
this gap,127 formation of adenylated compounds, e.g., ADP-
glucose, excretion of cAMP, …).

Therefore, some researchers opt to describe the evolution
of the cofactors as time dependent functions,107 which results
in a model that is no longer useful for extrapolation. Not tak-
ing the cofactors into account ‘‘mechanistically’’ thus results
in a limited usefulness of the resulting model. Then, also
assumptions have to be made about the evolution of the flux
distributions during the transient but it is questionable
whether these hold.

To reduce the uncertainty, one could gather a lot of data
both under steady-state and dynamic conditions, e.g., by per-
turbing the microbial cells with different substrates. How-
ever, such efforts have been limited thus far.123,128

The use of dynamic labeling data129 allows as well to
reduce the degrees of freedom related to the metabolic
fluxes, also under dynamic conditions. However, the huge
variety of biochemical pathways will render such an exercise
tricky, as the chosen metabolic network will influence the
calculated flux distribution.130

In addition, one should be aware that a lot of challenges
still remain in the field of analytical methods, since the accu-
rate determination of the intracellular metabolites is a con-
siderable task as well, due to, e.g., leakage and their low
concentrations.131–134 For example, whereas the expected
(equilibrium) ratio of the concentrations of glucose-6-phos-
phate [G6P] and fructose-6-phosphate [F6P], i.e.,
F6P½ 	
G6P½ 	 ffi 0:25,107,128,135,136 Bucholz et al. (2001)137 found for
this ratio

F6P½ 	
G6P½ 	 ffi 0:88.
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Another issue is that the state of the art dynamic meta-
bolic models either rely on in vitro determined kinetic equa-
tions or are based on approximative kinetics107,114,136 and
the consequences of a potentially erroneous model structure
are not well known. With respect to the in vitro determined
kinetic equations it is doubtful whether the kinetics are valid
under in vivo conditions, as these kinetics are obtained using
purified enzymes studied out of context.136,138

The variety of well—regulated metabolic pathways also
impedes a thorough understanding of the regulation of mi-
crobial processes, e.g., the relative importance of the flux
through pyruvate oxidase compared to the flux through pyru-
vate dehydrogenase is not that clear.139,140 Another example
is the jumble of reactions around the PEP-pyruvate-oxaloace-
tate node. Their regulation and importance under one or the
other condition is still not that well studied.141–143 The
inability to properly describe the dynamics of phosphoenol-
pyruvate (PEP) during the observation window of a perturba-
tion experiment,10,107 even though it is a key metabolite in
the primary metabolism, is the perfect illustration that setting
up a metabolic model in a proper way will be demanding
both for modellers and for experimentalists.

To deal with the limited predictive power of dynamic
models, a number of researchers have attempted to incorpo-
rate genetic regulation in their kinetic model.42,43 One should
however be aware that these examples are merely academic
examples, because or these models consider only a small sub
network, e.g., oxygen regulation of cytochrome production
in Escherichia coli,43 neglecting all interactions between the
small network and the rest of the cellular network, which is
thus studied completely out of context, or do consider the
whole cell but lack sufficient resolution, e.g., diauxic growth
on glucose and lactose,42 rendering them equally unfit to
really identify metabolic engineering targets. At present
mechanistic information is not available for large networks
and hence a mechanistic description of the genetic regulation
is intractable and impossible. Models, whether they are
approximative or mechanistic, can be useful to identify bot-
tlenecks110,115,120,144 in metabolism and consequently could
steer the process of metabolic engineering. However, since
enzyme levels are not taken into account nor the influence of
a genetic intervention on the metabolism, it should be clear
that the extrapolation power of such models remains limited.

In addition, one should be aware that the metabolic data
gathered during typically only one perturbation experiment
are highly correlated, this is both due to the nature of some
of the metabolic conversions, e.g., pseudo equilibrium reac-
tions (isomerization, …), the multiple interconversion possi-
bilities between different metabolites, and the way the
perturbation propagates throughout the metabolic network.
These highly correlated metabolite data renders the identifi-
cation of the model parameters a truly daunting. Because,
for the poorly identifiable model,41 many (completely) differ-
ent parameter sets will give almost identical fits to the lim-
ited data, in terms of information content, available to
identify the numerous model parameters, i.e., the equifinalty
problem.145 This will most likely lead to erroneous model
predictions.

Cybernetic Modeling

At present, one can not see the wood for the trees as the
knowledge on the regulatory mechanisms is lacking and
fragmentary.83,84 To partially circumvent this knowledge

gap, the cybernetic framework can be used, since microbial
species, that is, those that have undergone the process of
evolution, strive to regulate their metabolism in an optimal
manner.87,146 This reasoning is the rationale of the cybernetic
school of thought: a micro-organism tries to optimize its
behavior, e.g., with respect to growth or substrate uptake.
This is achieved by allocating the limited resources a micro-
organism disposes of to these competing enzymes yielding
the optimal performance.147–149 To this end, cybernetic vari-
ables were introduced into kinetic models with the aim of
substituting the unknown mechanistic details of the cell’s
regulatory architecture by an objective function that incorpo-
rates the fact that the metabolism of a micro-organism oper-
ates with a specific overall goal, such as the optimization of
growth.

Initially, the value of the cybernetic approach was demon-
strated using relatively simple examples, typically situated in
the domain of bioprocess control. In these cases, some
lumped pathways competed with each other for the available
resources, e.g., simultaneous and sequential substrate utiliza-
tion44 and single-substrate growth.150–152 Then the cybernet-
ics units could readily be identified. A cybernetic unit is a
cluster of enzymes that compete with each other for the
same pool of resources.

Over time more challenging ‘‘proofs of principle’’ were
chosen, e.g., in view of metabolic engineering of a produc-
tion host,45,149,153 and the model’s complexity increased.
More complex networks, without lumping were consid-
ered,154,155 but then a jumble of cybernetic units could be
identified and the corresponding cybernetic variables had to
be derived from the control laws. As a result, the choice of
the cybernetic units became less straightforward, even quite
arbitrary, and the library of cybernetic units had to be
extended (convergent, divergent, linear, and cycles).148,149

To overcome this, a more general framework was devel-
oped (Figure 7), based on the principles of optimal control

theory.45 Optimal control theory is a mathematical optimiza-

tion method for deriving control policies. It aims to find a

control law for a given system such that a certain optimality

criterion is achieved. In general, such a control problem

includes a gain function and a cost function relating state

and control variables. An optimal controller is a set of differ-
ential equations describing the paths of the control variables

that maximise the performance function. Rephrasing this in

the context of a micro-organism, the cost becomes, e.g., the

pool of amino acids a micro-organism needs to invest for the

production of a particular enzyme, and the cell’s gain could

be merely growth.

From a cybernetic point of view the microbial system can
be represented by following set of differential equations45:

dxSi
dt

¼ D x0Si � xSi

� �
� xX
qX

X
j

sMijrjvj (38)

dxMi

dt
¼
X
j

sMijrjvj � lxMi
(39)

dxEi

dt
¼ a?Ei

þ aEi
ui � bEi

xEi
� lxEi

(40)

with exception of a* which represents the constitutive syn-
thesis rate of enzyme Ei, a the synthesis rate of enzyme Ei,
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and b the specific degradation rate of enzyme Ei all variables
and parameters have been introduced in ‘‘Mechanistic and
Approximative Modeling’’ Section. This system is subject to
regulatory control both at the level of enzyme synthesis and
enzyme activity. These inputs are accounted for by introduc-
ing the control vectors u and v in Eqs. 39 and 40, respec-
tively, which specify how the resources are allocated among
the various alternatives/enzymes.

For clarity, the cybernetic variable controlling enzyme ac-
tivity, v, will be discarded. It is assumed that the cell allo-
cates its resources in such a way that the performance
function J is maximized. This can be described by optimal
control theory:

max J
subject to : _x ¼ f x; uð Þ (41)

Computing the optimal control is numerically quite
demanding. Assuming however that regulatory decisions are
made at each instant based on the projected system response
over a short time interval Dt, the system can be approxi-
mated by linearization (working point u0):

D _x ¼ ADxþ BuDuþ f x tð Þ; u0� �
(42)

A ¼ @f x; uð Þ
@x






x;u0

(43)

Bu ¼ @f x; uð Þ
@u






x;u0

(44)

The change in model performance DJ over the system’s
planning window Dt then becomes:

DJ ¼ qDxðtþ DtÞ � 1

2

ZtþDt

t

uTruu
� �

ds (45)

q ¼ @/ x tð Þð Þ
@x

DJ ¼ J tþ Dtð Þ � J tð Þ: (46)

in which the function /(x(t)) is the metabolic objective func-
tion of the system and ru a parameter that scales the cost
associated with resource investment. The values for u and v
are obtained by solving this constrained optimal control
problem. By solving the Hamiltonian and deriving the Kar-
ash- Kun-Tucker conditions,156 one finally finds for the con-
trol law ruling enzyme synthesis:

ui ¼ max pi; 0ð ÞPn
i¼1 max pi; 0ð Þ

with pi the return on investment for resources allocated to
the ith enzyme. Akin, the control law ruling enzyme activity
can be derived, yielding:

vi ¼ max pi; 0ð Þ
max
n

pnð Þ

Young (2005)45 introduced a global and a local control
level in the developed framework to ensure a steady behav-
ior. On a local control level Young (2005)45 opted for EMs
as cybernetic units (Figure 7). As elementary modes appear
to be useful to understand cellular objectives for the overall
metabolic network,157 the choice for the EMs as local con-
trol level seems quite obvious. However, the choice of the
associated objective function is less so. Young (2005)45

opted for the optimization of a harmonic mean flux J:

f ¼
Pn

i¼1 niPn
i¼1

ni
rivi

(47)

with n the number of reactions involved in the elementary
mode, ri the rate of reaction i, vi the cybernetic variable con-
trolling enzyme activity, and ni the flux through reaction i in
the elementary mode. This objective function aims at a
steady throughput through the EM, and consequently accu-
mulation or depletion of certain metabolites is avoided.
However, its biological foundation seems difficult to grasp.

On a global control level the various EMs compete with
each other for the available resources (Figure 7). The objec-
tive function used for this control level is maximisation of
growth (J ¼ l).

Pros and cons for the rational design of bioprocesses—
When applying cybernetic models the same armamentum of
optimization techniques can be used as for mechanistic and
approximative models. However, because enzyme levels are
considered to be variable the extrapolation potential and
hence the predictive power of those models is in theory
much larger. In addition, the genetic regulation, which is so
difficult to be captured by both flux balance analysis models

Figure 7. The cybernetic framework.

On a local control level compete the various reactions/enzymes
of an EM with each other for the limited resources, which are
allocated in such a way that a steady throughput is ensured
(harmonic mean). On a global control level the various EMs
compete with each other for the available resources. On a
global control level the resources are allocated to the various
EMs in order to maximise growth.
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and mechanistic models, is relatively successfully captured
by means of the nonlinear programming, which allows to
capture the subtleties of genetic regulation, in stead of the
on/off regulation of gene expression typically used in flux
balance analysis models.

Cybernetic models consider both metabolome and pro-
teome. They apply principles of control theory with the aim
of substituting the unknown mechanistic details of the cell’s
regulatory architecture by an objective function by supposing
that the metabolism of a micro-organism operates with a
specific overall goal. Such models are therefore thought to
have more extrapolation power. Although the approach thus
seems appealing, given the present lack of knowledge and
detailed experimental omics data and the aforementioned
problems linked to mechanistic modeling, there still remain
some issues unresolved: (i) it is still unclear to what extent
unknown regulatory mechanisms can be captured by the
framework, (ii) the robustness of the approach is unclear, e.g.,
although cybernetic models are said to be able to properly
describe steady-state multiplicity,158,159 real experimental evi-
dence to support such a claim is lacking, (iii) though the
cybernetic approach is a minimalistic approach, contrary to
mechanistic models containing complex kinetics with a large
number of (unidentifiable) parameters,41 the incorporation of
enzymes and the parameters for enzyme synthesis and degra-
dation results in many parameters that are difficult to estimate,
and (iv) for even relatively small networks the number of
EMs is huge, e.g., for the metabolic network of61 17528 EMs
are calculated, which use glucose as carbon source. Which
EMs to choose, remains a question hard to answer.

Multivariate Statistics

Finally, multivariate statistics, principal component analy-
sis (PCA) and partial least squares (PLS),160,161 are more
and more used in the field of metabolism studies22–24 to
interpret and to extract information from the pile of metabo-
lomic, transcriptomic, and genomic data. By applying these
methods, targets can be identified from data only in view of
further improving production hosts. Especially the use of
partial least squares seems promising. The objective in PLS
modeling is to find a few ‘‘new’’ variables, X-scores, in such
a way that the information in the dependent variables Y can
be predicted as good as possible.

In fact, this projection method decomposes variables of
high collinearity into one-dimensional variables, i.e., an input
score vector t and an output score vector u, which allows
PLS to handle many and correlated predictor variables.161

The vectors t1 and u1 are defined as162:

t1 ¼ E0w1 (48)

u1 ¼ F0c1 (49)

where E0 is the standardised data matrix from X and F0 is
the standardised data matrix from Y.163 The aim of this data
pretreatment is to focus on the (relevant) biological informa-
tion by emphasising different aspects in the data, for
instance, the value of a variable relative to its average value
and to reduce the influence of disturbing factors, e.g., mea-
surement noise.163 Hence, the regression formulae for com-
ponents t1 and u1 are given by:

E0 ¼ t1p
T
1 þ E1 (50)

F0 ¼ u1q
T
1 þ F1 (51)

where p1 and q1 are the loading vectors, and E1 and F1 are
residual matrices. The linear relationship between t1 and u1
is calculated by:

u1 ¼ b1t1 þ r1 (52)

where b1 is the regression coefficient and r1 is the residual
vector. If t1 and u1 cannot explain the data within a specified
precision or do not contain enough information, E0 and F0

will be replaced by the residual matrices E1 and F1. Conse-
quently, the next latent variable vectors t2 and u2 are calcu-
lated by:

t2 ¼ E1w2 (53)

u2 ¼ F1c2 (54)

The regressions for components t2 and u2 are therefore
calculated by:

E1 ¼ t2p
T
2 þ E2 (55)

F1 ¼ u2q
T
2 þ F2 (56)

This iterative procedure is repeated by using the regres-
sion residual terms obtained at the previous iteration on both
the inputs and outputs at each step. The decomposition of E0

and F0 by score vectors is defined by:

E0 ¼
Xm
h¼1

thp
T
h þ E (57)

F0 ¼
Xm
h¼1

uhq
T
h þ F (58)

where p and q are loading vectors, E and F are residuals.
For the number of m terms, a cross-validation method can be
applied or a threshold variance of E can be used as stopping
criterion.160

In PLS one can calculate a similar kind of regression coef-
ficients as one does in multiple linear regression. These
regression coefficients relate matrix X directly to Y:

Y ¼ XBþ e (59)

Both regression coefficients and loading weights can be
used to study the system. Note that these regression coeffi-
cients are not independent unless the number of partial least
squares regression components equals the number of X-varia-
bles. By studying the loading weights, one can see how im-
portant the variable is in each latent variable. A large
positive or negative weight value indicates that the corre-
sponding X variable is highly correlated with the values in
the score matrix U and hence with matrix Y. Correlations
between variables can be verified by looking at the loading
weights.160,164

van der Werf et al. (2005)24 applied PLS regression to
link metabolite levels to the microbial phenotype, i.e., by
ordering the importance of the metabolites by virtue of the
weight factors, metabolites that contributed most to the phe-
notype of interest could be identified.
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Pros and cons for the rational design of bioprocesses—
Partial least squares regression is a useful tool to analyze the
numerous and highly correlated data that are typically col-
lected in the context of metabolic engineering. In this con-
text metabolite24 and transcript levels are linked to the
microbial phenotype and subsequently their importance can
be evaluated.

However, though the establishment of correlations
between product formation and process variables, intracellu-
lar concentrations, etc. may be relatively easy, it is not that
easy to remedy the identified bottlenecks. For example,
though the concentration levels (low or high) of certain
metabolites can be linked with increased product formation,
PLS does not yield information about how to obtain the
desired concentration levels. van der Werf et al. (2005)24,54

relatively successfully applied this method to select targets
in view of optimization. This selection was based on the cal-
culated regression coefficients. However, since these regres-
sion coefficients are in general dependent (unless the number
of PLSR components equals the number of X-variables) their
confidence intervals according to the traditional statistical
interpretation are infinite.160 Hence, the robustness against
false positive targets is limited. Martens and Martens165 used
jack-knifing to estimate standard errors and confidence inter-
vals (During cross-validation the variation in the parameters
can be used to compute their standard deviation and subse-
quently their confidence interval).

Because of its properties, PLS is also popularly used in
the context of process analytical technology (PAT) to moni-
tor and control complex bioprocesses.166 This PAT frame-
work aims to design, develop, and operate processes
consistently, in order to ensure a predefined quality at the
end of the manufacturing process.

For interpretation purposes, better tools do exist in com-
parison with partial least squares, e.g., stepwise multivariate
linear regression. However, the typical data collected in the
context of metabolic engineering are often highly correlated
which leads to multicollinearity problems, e.g., biased pa-
rameter estimates and dangerously unstable predictions.
Hence, partial least squares is popularly used.22–24

Another disadvantage of such an approach is that these
models are completely data driven and consequently do not
use the state of the art knowledge. To deal with this issue
some have attempted to combine partial least squares and
mechanistic models, e.g., Lee et al. (2005).167 Such exam-
ples are for the moment however scarce.

Thus, though relationships can be established between, for
instance, metabolite pool sizes and a process parameter, it
remains unclear how to modify the cell with a view to
improving process performance.

Conclusions

It should be clear from the earlier sections that despite the
vast lack of knowledge about the cell’s regulatory architec-
ture, the application of both experimental techniques and
mathematical methods steadily yields valuable information
about the microbial metabolism. For instance, stoichiometric
network analysis is a useful tool to rapidly evaluate the pos-
sible impact of knock-outs and knock-ins on the process
performance.

In the presence of data, the use of constraints-based flux
balance analysis seems more promising to steer the process

of metabolic engineering. One should however be aware that
it is hard to mathematically predict/capture the many subtle-
ties of the microbial regulation. Hence, the applied environ-
mental conditions and the (adaptation to a perturbed) genetic
background will determine the success of such an approach.
Furthermore, it should be clear that the objective function
should be chosen with great care, since cellular optimal
behavior does not always coincide with growth maximiza-
tion. Especially for the optimization of the production of
metabolites in primary metabolism that are subject to severe
(redox) constraints, stoichiometric modeling has been shown
to be useful. It is less so for the optimization of minor
pathways.

Carbon modeling allows to obtain a more detailed insight
in the flow of carbon throughout the metabolic network. In
many metabolic engineering applications a detailed under-
standing of the flow of carbon is a prerequisite to directedly
modify the cell. In this context, the gathering of isotopic
instationary data both under steady-state and dynamic condi-
tions will boost model-based metabolic engineering, since
the information content of such data is huge. More attention
should however be devoted to the validity check of the ulti-
mately obtained flux distribution. The application of these
tools may result in new insights about the metabolic network
to be chosen.

Dynamic metabolic models might be useful tools to opti-
mize microbial metabolism as well, as these models do
incorporate kinetics and the regulation of enzymatic reac-
tions and are able to identify the bottlenecks in a metabolic
pathway. Especially for the optimization of minor pathways
and metabolites that are not subject to severe (redox) con-
straints, dynamic metabolic modeling has been shown to be
useful. However, the drawbacks of this approach are still
numerous. Models relying on in vitro derived mechanistic
equations are overparameterized for the available data,
nowadays typically collected during only one perturbation
experiment. The alternative, approximative modeling is no
deus ex machina either as in order to collect informative
data for parameter identification it might be necessary to rad-
ically perturb the cell, probably way beyond the metabolite
range for which approximative kinetic formats yield an
adequate description of the true kinetics. In addition, these
dynamic metabolic models, both mechanistic and approxima-
tive ones, zoom in on a limited part of the metabolism,
which impedes mass balance checks during transient condi-
tions. Moreover, the behavior of cofactors is not yet mod-
elled in a mechanistic manner, since, for instance, the pool
size of the adenine nucleotides inexplicably changes during
the transition from a glucose-limited to a glucose-abundant
culture. Despite the rise of exchange tools like the systems
biology markup language (SBML),168 one thus should be
aware that the ‘‘plug and play’’ character of such model(s)
(structures) remains limited. In addition there is still a long
way to go before genetic regulation will be properly
addressed.

At present the only feasible way to model this multilevel
regulation appears to be the cybernetic framework, since
detailed mechanistic knowledge about this regulation is lack-
ing, which renders such a mechanistic approach completely
intractable for large metabolic networks. The nonlinear pro-
gramming that steers the allocation of the limited resources
the cell disposes of, seems to successfully capture this
genetic and metabolic regulation. Although the approach
seems appealing, given the present lack of knowledge,
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detailed experimental omics data, and some of the aforemen-
tioned problems linked to ‘‘conventional’’ kinetic metabolic
modeling, there still remain some issues unresolved, which
will require further research.

Despite the potential of the afore-mentioned modeling
tools the usefulness of data driven techniques, such as partial
least squares regression, to optimize microbial metabolism,
is clear. However, though, the establishment of correlations
between product formation and process variables, intracellu-
lar concentrations, etc. may be relatively easy, it is not that
easy to remedy the identified bottlenecks.

Despite the increasing ability of these tools to describe
cellular metabolism as a whole, the contemporary lack of
knowledge about the functioning of the cell is still limiting
the use and usefulness of many of them to steer the process
of metabolic engineering, e.g., at present a lot of mathemati-
cally relevant questions remain unanswered, e.g., which net-
work and objective function to choose? Consequently, the
search for tools which are useful to help unravel the complex
regulation of microbial metabolism has not come to an end
yet. In addition, more labeled and unlabeled intracellular
metabolomic, proteomic, transcriptomic, and genomic data
gathered under both steady-state and dynamic conditions will
be imperative to fully exploit the potential of these techni-
ques and to reduce the uncertainty on the identified genetic
engineering targets.
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