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Abstract：Multivariate analysis and batch monitoring on a pilot-scale sequencing batch reactor (SBR) are 
described for integrated wastewater treatment management system, where a batchwise multiway independent 
component analysis method (MICA) are used to extract meaningful hidden information from non-Gaussian 
wastewater treatment data. Three-way batch data of SBR are unfolded batch-wisely, and then a non-Gaussian 
multivariate monitoring method is used to capture the non-Gaussian characteristics of normal batches in 
biological wastewater treatment plant. It is successfully applied to an 80L SBR for biological wastewater 
treatment, which is characterized by a variety of error sources with non-Gaussian characteristics. The batchwise 
multivariate monitoring results of a pilot-scale SBR for integrated wastewater treatment management system 
showed more powerful monitoring performance on a WWTP application than the conventional method since 
it can extract non-Gaussian source signals which are independent and cross-correlation of variables.

Key Words：Advanced monitoring, Batchwise unfolding, Integrated wastewater treatment management system, 
Multivariate statistical process control (MSPC), Multiway independent component analysis (MICA), Sequencing 
batch reactor (SBR)

INTRODUCTION1

The increase in environmental restrictions in 
recent times has led to an increase in efforts aimed 
at attainment of better effluent quality of wastewater 
treatment plants. Achieving this goal requires ad-
vanced monitoring and control of plant performance. 
Wastewater treatment plants are slow when they 
have to recover from a ‘bad’ state to a ‘normal’ 
state. The early detection and isolation of faults in 
the biological process is therefore very effective 
since they allow corrective action to be taken well 
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before the situation becomes dangerous. Some changes 
are not very obvious and may gradually grow until 
they become a serious operational problem.1-6)

Monitoring and fault detection of the environ-
mental processes are very important tasks in environ-
mental system engineering (ESE) since they aim 
to ensure the success of the planned operations 
and to improve the productivity of the related 
processes. Early detection of faults can help avoid 
major breakdowns and incidents. In general, four 
tasks are involved in the process monitoring: (1) 
fault detection, which gives an indication that 
something is going wrong in the process; (2) 
fault  identification (or diagnosis), which determines 
the root cause of the fault; (3) fault estimation, 
which assesses the size of the fault; and (4) fault 
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Figure 1. Fault detection and diagnosis scheme for 
a process monitoring.

reconstruction, which estimates the fault-free values. 
Figure 1 illustrates a environmental process monitoring 
scheme. Fault detection is defined as a combina-
tion of process observations and measurements, data 
analysis and interpretation to detect abnormal features 
or effects and the isolation of faults. Fault diagno-
sis involves the analysis of effects to identify 
aberrant variables and rank likely causes. Advice 
includes a synthesizing strategy to eliminate the 
causes and return the process to normal operating 
conditions.1,5) 

In recent industrial plants, many variables are 
measured in various environmental system and are 
recorded in abundance. However, such data sets 
are highly correlated and are subject to con-
siderable noise. In the absence of an appropriate 
processing method, only limited information can 
be extracted, which causes insufficient understanding 
of the process by the operator and may lead to 
unstable operation. If properly treated, this data 
can provide a wealth of information leading to 
keep the plant operators understand the status of 
the process and assist them to make appropriate 
actions to remove abnormalities resulting from the 
process.

Sequencing batch reactor (SBR) processes have 
demonstrated their efficiency and flexibility in the 
treatment of wastewaters with high concentrations 
of nutrient, nitrogen, phosphorous, and toxic com-
pounds from domestic and industrial sources. A 

SBR has a unique cyclic batch operation, usually 
with five well-defined phases: fill, react, settle, 
draw and idle. Most of the advantages of SBR 
processes may be attributed to their single-tank 
designs and the flexibility that allows them to 
meet many different treatment objectives, and 
which is derived from the possibility of adjusting 
the duration of the different phases. But the SBR 
process is highly nonlinear, time-varying and subject 
to significant disturbances like hydraulic changes, 
composition variations and equipment failures. Small 
changes in concentrations or flows can affect 
effluent quality and microorganism growth. However, 
treatment performance, the key indicator of process 
performance, is often only examined off-line in a 
laboratory. Even though operators are aware that 
there are some problems in treatment performance, 
they cannot quickly find out or predict what the 
causes are and when the problems will occur 
because most batch processes are run without any 
effective form of real-time on-line monitoring. 
Therefore, multivariate analysis and process monito-
ring of SBR are crucial to detect faults that can 
be corrected prior to completion of the batch or 
can be corrected in subsequent batches because it 
may take several days, week or ever months for 
the biological process to recover from abnormal 
operation.4,7)

Multiway principal component analysis (MPCA) 
has been shown to be powerful monitoring tools 
in many industrial batch processes.8-9) However, 
for some complicated cases in industrial environ-
mental processes which especially have non-Gaussian 
characteristics, principal component analysis (PCA) 
exhibits bad behaviour because of its Gaussianity 
assumption. They have the shortcoming that the 
measurement variables of the batch process should 
have Gaussian correlations. Recently, a new monito-
ring method to cope with this non-Gaussain and 
nonlinear biology has developed in monitoring 
the wastewater treatment process, which can capture 
the biological relationship using independent component 
analysis (ICA), are suggested and compared in 
order to overcome the drawbacks of conventional 
method and obtain better monitoring performance.10-12) 

In this work, batchwise multiway independent 
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component analysis (MICA) suggested by Yoo et 
al.13) is used to tackle the non-Gaussian problem 
and obtain better batch monitoring performance 
of the pilot-scale SBR. This article is organized 
as follows. Batchwise MPCA and batchwise MICA 
are described in material and method section. 
Case study in a pilot-scale SBR is given in an 
experimental result section. Finally, the conclusions 
will be shown.

MATERIALS AND METHODS

MPCA
Multiway principal component analysis (MPCA) 

is used for the analysis and monitoring of batch 
process data. Batch data are typically reported in 
terms of batch numbers, variables and times. 
Therefore, batch processes are, by nature, leading 
to a 3-way matrix ( )( KJI ××X ) of data, where I 
is the number of batches, J is the number of 
variables and K is the number of times each batch 
is sampled. In a typical batch run, Jj ,,2,1 Κ=  
variables are measured at Kk ,,2,1 Κ=  time inter-
vals throughout the batch. There exists similar data 
on several ( Ii ,,2,1 Κ= ) similar process batch runs. 
This matrix can be decomposed using various 
three-way techniques, one of which is MPCA. 
MPCA is equivalent to performing ordinary PCA 
on a large two-dimensional matrix X  constructed 
by unfolding the three-way data in the manner 
shown schematically in Figure 2.8)

MPCA decomposes the three-way array X  
into a summation of the product of a score tr 
and a loading matrix Pr plus a residual array E 
that is minimized in the least squares sense as 
follows: 
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where ⊗ denotes the Kronecker product ( PtX ⊗=  
is ),()(),,( kjPitkjiX = ), R denotes the number of 
principal components retained, tr expresses the 
relationship among batches, pr is related to vari-
ables and their time variation, E is the residual 
matrix. The first expression in Eq. (1) gives the 

3-D decomposition while the second expression 
displays the more common 2-D decomposition. 

The three-way array X can be unfolded in three 
ways, which give rise to the following two-
dimensional matrices9) :
∙Batches ×  variables at each time  
  (time-wise unfolding) 
∙Variables ×  time for each batch 
  (batch-wise unfolding)
∙Batches ×  times for each variable 
  (variable-wise unfolding)

Time-wise unfolding is useful for analyzing the 
variability among samples, and batch-wise unfolding 
facilitates the analysis of the variability among 
batches by summarizing the information related to 
the measured variables and their variations over 
time. Variable-wise unfolding can be used to obtain 
information about the variability among the batch 
variables. In previous studies, the batch-wise un-
folding method has been the most widely used 
method for analyzing batch process data. Its aim 
is model the differences of each batch run from 
a theoretical normal operating condition. In addition, 
it is suitable for deriving estimate of final quality 
measures from process data that are usually not 
available until the batch terminates. Moreover, the 
majority of the nonlinear behavior of the process 
is eliminated by subtracting off the mean trajec-
tory of each variable at each time. After the un-
folded matrix has been mean-centered and scaled, 
PCA is performed. The results from PCA are the 
loading vectors, and the calculated scores for 
each batch. The loading vectors contain a weight 
for each variable at each time.8-9) In this paper, 
the batch-wise unfolding scheme in Figure 2 is 
used. 

The statistics used for a MPCA are Hotelling’s 

Figure 2. Batchwise unfolding method for a three-
way batch.
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T2 and squared prediction error (SPE). If a new 
batch is good and consistent with the normal 
batches, its scores should fall within the normal 
range and the SPE or Q-statistic should be small. 
The T2 and Q-statistics obtained at end-of-batch 
for batch i are calculated as
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where e i is the ith row of E, I is the number of 
batches in the reference set, tr is a vector of R 
scores, S is the (R×R) covariance matrix of the 
t-scores calculated during the model development 
(diagonal due to the orthogonality of the t score 
values), R is the number of principal components 
retained in the model, FR,I-R is the F-distribution 
value with R and I-R-1 degrees of freedom. 
Statistical limits on the T2 and Q-statistics are 
computed by assuming that the data have a multi-
variate normal distribution.8)

Independent Component Analysis for non-
Gaussianity data

The extraction of hidden information from the 
multidimensional data set is crucial to successful 
fault detection. In this paper, we adopt the technique 
of independent component analysis (ICA) to extract 
such hidden information. It is well known that many 
of the variables monitored in process systems are 
not independent. The measured process variables 
may be combinations of independent variables that 
are not directly measurable (referred to as latent 
variables in probabilistic theory). Independent com-
ponent analysis (ICA) can extract these underlying 
factors or components from multivariate statisti-
cal data. It defines a generative model for the 
observed multivariate data, which are typically in 
the form of a large database of samples. In this 
model, the data variables are assumed to be linear 
or nonlinear mixtures of some unknown latent vari-
ables, where the system governing the mixing of 
the latent variables is also unknown. The latent 
variables, which are called the independent compo-

nents (ICs) of the observed data, are assumed to 
be non-Gaussian and mutually independent. ICA 
seeks to extract these ICs as well as the mixing 
process.10-12) 

What distinguishes ICA from PCA is that it 
looks for components that are both statistically 
independent and non-Gaussian. PCA is a dimensio-
nality reduction technique in terms of capturing 
the variance of the data which is capable of extrac-
ting uncorrelated latent variables from correlated 
data, while ICA is designed to separate the indepen-
dent components (ICs) that are independent and 
constitute the observed variables. Furthermore, PCA 
can only impose independence up to second order 
statistics information (mean and variance) w h ile 
constraining the direction vectors to be orthogo-
nal, whereas ICA has no orthogonality constraint 
and also involves higher-order statistics. In case of 
ICA, the most interesting directions are those that 
show the non-Gaussian distributions, whereas the 
directions of PCA are looking for the Gaussian 
distribution. Thus, both models have a different 
projection pursuit. ICA may reveal more meaning-
ful information in the non-Gaussian data than PCA.12)

To illustrate the superiority of ICA over PCA, we 
applied the two types of analysis to a simple 
example system. Let’s consider two source vari-
ables that have the uniform distributions shown 
in Figure 3(a). The source variables are linearly 
independent, i.e., the values of one source variable 
do not convey any information about the other 
source variable. These sources are linearly mixed 
as follows:
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Figure 3(b) shows the scatter-plot of the 
mixtures. Note that the random variables 1x  and 

2x  are not independent because it is possible to 
predict the value of one of them from the value 
of the other. When PCA is applied to these mixed 
variables, it gives two principal components. The 
axes of the first and second PCs (PC1, PC2) are 
shown in Figure 3(b). The first PC is the axis 
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Figure 3. (a) Scatter plot of the original source data, (b) The mixtures and axes of PCA and ICA, (c) 
The recovered source data using PCA, (d) The recovered source data using ICA.

capturing the highest variance in the data and 
the second PC is the axis orthogonal to the first 
PC. Figure 3(c) shows the PCA solution, which 
differs from the original because the two principal 
axes are still dependent. However, the ICA 
solution shown in Figure 3(d) can recover the 
original sources since ICA not only decorrelates 
the data but also rotates it such that the axes of 

1u  and 2u  are parallel to the axes of 1s  and 2s . 
The axes of the first and second independent 
components (IC1, IC2) are shown in Figure 3(b). 
The basic idea of this approach is to extract 
essential independent components that drive a 
process and to combine them with process monitoring 
techniques. The simple example given above clearly 
demonstrates that if the latent variables follow a 
non-Gaussian distribution, the ICA solution extracts 
the original source signal to a much greater extent 
than the PCA solution. Therefore, it is natural to 
infer that a monitoring system based on the ICA 
solution may give better results compared to PCA 
(for detail algorithm of independent component 
analysis, see the appendix A).

Batchwise Multiway Independent Com-
ponent Analysis 

The monitoring method based on batchwise multi-

way independent component analysis (MICA) sug-
gested by Yoo et al.13) is similar to that based 
on MPCA. The key idea is to exploit the ability 
of MICA to extract features from three-way batch 
data by projecting the data onto a low-dimensional 
space that summarizes both the variables and their 
time trajectories. MICA is equivalent to performing 
ICA on a large two-dimensional matrix X  con-
structed by batchwise unfolding the three-way 
data matrix X . MICA decomposes the three-way 
array X  into a summation of the product of 
independent vectors sr and loading matrices A r 
plus a residual array E so that the ICs s become 
as independent of each other as possible:
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where ⊗ denotes the Kronecker product ( AsX ⊗=  
is ),()(),,( kjAiskjiX = ) and R denotes the number 
of ICs retained. The S and A  matrices in Eq. 
(5) can be equivalent to the loading matrix and 
score matrices by analogy with MPCA, i.e. S  
can be regarded as the score matrix T, and A  
can be treated as the loading matrix P. The ith 
elements of the independent vector s correspond to 
the ith batch and summarize the overall variations 
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in this batch with respect to the other batches 
over the entire history of the batch. The mixing 
matrix, A , summarizes the time variations of the 
measured variables about their average trajectories. 
The elements of this matrix are the weights, 
which give the independent vectors s for a batch 
when applied to each variable at each time interval 
within that batch.13) In MICA, an unfolded data 
matrix, X , representing multiple batch runs is 
decomposed, rrr ZΛUX 2/1= , and (r x r) orthogonal 
rotation matrix, B, is computed to produce rotated 
scores, BΛUA 2/1

rr=  and loadings, )( r
T ZBS =  giving 

r
T

rr ZBBΛUX 2/1= , such that IBB =T  (for detail pro-
cedure of developing the MICA model, see the 
appendix B).

In MICA,13) two statistics are deduced from the 
process model in normal operation: the D-statistic 
for the systematic part of the process variation and 
the Q-statistic for the residual part of the process 
variation. The D-statistic for a batch k, also known 
as the I2 statistic, is the sum of the squared 
independent scores and is defined as follows:

)(ˆ)(ˆ)(2 kkkI newd
T

newd ss= (6)

The Q-statistic for a batch k, also known as 
the SPE statistic, is defined as follows:

( ) ( ))(ˆ)()(ˆ)()()()( kkkkkkkSPE TT xxxxee −−== (7)

where x̂  can be calculated as follows:
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In MPCA monitoring, the confidence limit is 
based on a specified distribution based upon the 
assumption that the latent variables follow a 
Gaussian distribution. In batchwise MICA monitoring, 
however, the independent components do not con-
form to a specific distribution; hence, the con-
fidence limits of the I2 and SPE statistics cannot 
be determined directly from a particular appro-
ximate distribution. An alternative approach to 
defining the nominal operating regions is to use 
data-driven techniques such as non-parametric empiri-

cal density estimates using kernel density estimation 
(KDE).14) In this paper, the confidence limits of 
the two statistics, I2 and SPE were obtained by 
kernel density estimation, where the Gaussian kernel 
and the least squares cross-validation (LSCV) 
methods for selecting h were used. Here, the I2 
value is used to detect faults associated with 
abnormal variations within an MICA model sub-
space, whereas the SPE value is used to detect 
new events that are not taken into account in an 
MICA model subspace.

The I2 and Q-statistic methods provide reliable 
tools for detecting that a multivariable process has 
gone out-of-control. The principal component loadings 
and detection limits for multivariate statistical 
process control (MSPC) are computed from data 
representative of normal operating conditions. The 
process data obtained under normal operating con-
ditions contain only common cause variation, i.e., 
variation in the process that is not due to a fault 
or disturbance. Confidence limits can be developed 
around the common cause variation for both the 
systematic component of the variation and the 
residual component. The systematic component 
of the process data, which is described by the 
process model, is monitored using the I2-statistic 
chart. The pattern of the residuals is monitored 
using the Q-statistic, which is a summation of the 
squared residuals of a specific time. The I2-statistic 
monitors systematic variations in the independent 
variable space, while the Q-statistic represents 
variations not explained by the retained ICs. That 
is, faults in the process that violate the normal 
correlation of variables are detected in the indepen-
dent component (IC) subspace by the I2-statistic, 
whereas faults that violate the batchwise MICA 
models are detected in the residual space by the 
Q-statistic.

Process description of the pilot-scale SBR 
system

The batch monitoring method is applied to a 
pilot-scale SBR system shown in Figure 4. A fill-
and-draw sequencing batch reactor (SBR) with an 
80 l working volume is operated in a 6 h cycle 
mode and each cycle consists of fill/anaerobic (1 
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Figure 4. Schematic diagram of the pilot-scale sequencing batch reactor.

h), aerobic (2 h 30 min), anoxic (1 h), re-aerobic 
(30 min) and settling/draw (1 h) phases. The 
hydraulic retention time (HRT) and the solid 
retention time (SRT) are maintained at 12 h and 
10 d, respectively. Like synthetic municipal-like 
sewage, loading amounts of COD, NH4

+-N and 
PO4

3--P per cycle in standard conditions are 440, 
60 and 9.5 mg/l, respectively. The control of the 
duration/sequence of phases and the on/off status 
of peristaltic pumps, mixer and air supply are 
automatically achieved by a Labview program. 
Six electrodes for pH, oxidation-reduction potential 
(ORP), dissolved oxygen (DO), temperature, con-
ductivity and weight are connected to the indi-
vidual sensors to check the status of the SBR, 
where a set of on-line measurements is obtained 
every one minute. Thus, no advanced nutrient or 
expensive measurement devices were installed in 
order to run an on-line monitoring algorithm of 
the SBR process. 

It has been reported that on-line sensor values 
collected in SBR are related with dynamic charac-
teristics of the nutrient concentrations (COD, 
NH 4

+-N, PO 4
3 - and NO 3

-) in SBRs.1 5 ,1 6 ) The 
on-line values of pH, ORP and DO profiles can 
detect the ends of phosphate release, ammonia 
conversion, and phosphate uptake, which also 

Table 1. Real-time measured variables of a SBR
No. Variables

1 Conductivity (mS)
2 Dissolved oxygen concentration (mg/l)
3 Oxidation reduction potential (mV)
4 pH
5 Temperature (°C)
6 Weight (g)

Figure 5. Typical batch trajectory profiles of a SBR.

are useful information sources. Therefore, six 
on-line variables of Table 1 including pH, ORP, 
DO signals were calculated from on-line sensor 
profiles and included into the database. Figure 5 
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Figure 6. Multivariate analysis of all 280 batches using (a) MPCA, (b) MICA.

shows typical batch profiles of the 6 variables 
during a batch. We considered 280 batches in 
the historical data set of the SBR for which 6 
variables were available at 300 time instants.

EXPERIMENTAL RESULTS AND  
DISCUSSION

Multivariate analysis of historical data set 
in SBR 

The MPCA and MICA models for the SBR 
monitoring are used to analyze the historical 
SBR data set. Both methods are used to all 280 
batches to interpret the historical batch and get 
rid of the abnormal batches in SBR. Figure 6 
shows the monitoring result of 280 batches of 
the SBR using the MPCA and MICA methods, 
where the dotted lines correspond to the 95 and 
99% confidence limits. Five components of the 
MPCA model were selected by the cross-validation 
method.13) To ensure comparison of equivalent 
models, five ICs were selected for the MICA 
model. From this figure, we notice that the MICA 
plot shows characteristics dissimilar from the MPCA 
one. Compared to MPCA, MICA points to a lower 
number of abnormal batches in SBR. This diffe-
rence can be explained by the density estimation 
of the SBR data. Figure 7 shows that the density 
estimate of the first score (t1) in MPCA does 
not follow the Gaussian distribution but the 

Figure 7. The density estimate of non-Gaussian 
distribution of the first principal score 
(t1) obtained from MPCA.

‘supergaussian distribution’ in which process variables 
take relatively more often values that are very 
close zero, where the probability density of the 
data is peaked in the middle and has heavy tails 
(large values far from zero).4) Thus, the T2 and 
SPE  charts of M PCA that are based on the 
assumption that the data are Gaussian distributed 
may cause a false result when it is used for SBR 
monitoring. This observation is the motivation of 
the MICA method because MICA is sensitive to 
modes whose influences on the measured variables 
follow a supergaussian distribution. 

Figure 8 represents the loading plot of each 
variable of each time interval of the first IC. It 
shows the types of information that can be ex-
tracted when MICA is used in batch modeling. 
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Figure 9. Monitoring result of 30 test batches. (a) MPCA and (b) MICA. The dotted lines correspond to 
the 99% confidence limit.

Figure 8. The variable loading plot of the first 
independent score (i1) obtained from MICA.

The loading plot obtained from MICA gives the 
history and identified important features of the 
SBR. From this figure, we notice that the DO, 
conductivity, and pH show large variations and 
have large influences during a batch, whereas ORP 
and weight show relatively small variations. This 
biological interpretation of MICA is meaningful 
to the multivariate monitoring of batch processes 
in case of non-Gaussian distributions.

Batch monitoring of SBR
The MPCA and MICA models for the SBR 

monitoring were developed after an analysis of 
the historical SBR data set. The MPCA model 
selected 143 batches to create a rather broad scope 
of normal batches, where 7 abnormal batches 

(batch number: 8,18,26,51,60,84,85) were excluded 
for the normal operating condition (NOC) model. 
The MICA model selected 146 batches, where 4 
abnormal batches (batch number: 57, 58, 84, 85) 
were excluded for the normal NOC model. The 
test data set that consisted of the following 30 
batches was projected onto the reduced MPCA 
and MICA model spaces. Figure 9 shows the batch 
monitoring result of 30 test batches by MPCA 
and MICA. Both of them could detect two 
abnormal batches (batch 12, 13). Both the MPCA 
and MICA methods show similar detection times 
for two non-conforming batches. Figure 10 shows 
an univariate plot of the on-line DO measurements 
of the normal batches and the abnormal batch 
no. 12 which was over-aerated at the start of the 
aeration phase. Thus, when a fault is detected in 
biological batch process, the batch run will control 
the current batch and moreover, operators will 
use the information on the fault to correct the 
following batch. 

There is a single batch (batch no. 9) which 
shows the different monitoring result from two 
methods. While MPCA detected batch 9 as an 
abnormal batch, MICA left batch 9 as a normal 
batch. Figure 11 shows on-line monitoring charts 
of MPCA and MICA for normal batch 9. The 
MICA result shows that the I2 and SPE statistics 
for this batch are within the control limits for 
the whole duration of the batch run. Therefore, 
this batch in MICA is assigned as being “in 
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Figure 11. On-line monitoring charts for normal batch 9: (a) T2 and SPE charts of MPCA, (b) I2 and 
SPE charts of MICA.

Figure 10. Univariate plot of on-line DO measure-
ment of the normal batches and the 
abnormal batch 12.

control” or “normal”. Actually, batch 9 is a normal 
batch. But the SPE chart of MPCA exceed the 
upper control limits once, at around the 150th 
sampling time. When MPCA is applied to non-
Gaussian data, the T2 chart of MPCA may suffer 
oversensitivity for normal batches, e.g., batch 9. 
As a data set deviates from a Gaussian distribution, 
the variance tends to increase and hence the T2 
statistic tends to decrease. Hence, it results in 
less false alarms. Typically, this increases the false 
alarm rate of the MPCA in which a normal batch 
might be judged as a non-conforming one. Ob-
viously, this deteriorates the reliability of the 
monitoring system. This false alarm of MPCA 
comes from a bad modeling result. The above 
clearly showed that the MICA monitoring technique 
can solve the non-Gaussian dynamics of the SBR 
better than MPCA. On the other hand, the I2 

chart of MICA moves up and down four times 
from the beginning of a batch to the end time 
of SBR process since the operating conditions of 
SBR process have a unique cyclic batch operation 
(anaerobic, 1st aerobic, anoxic and 2nd aerobic 
phases). It shows that the MICA model can capture 
the biological phenomena and their relationships 
which occur during the batch. 

In summary, the capability difference between 
the MPCA and MICA methods mainly originates 
from the extracted feature components. Both methods 
find hidden information from the multidimen-
sional data set. While MPCA looks for Gaussian 
components, MICA searches for non-Gaussian com-
ponents. If a data set contains any non-Gaussian 
component, MICA can show better feature extrac-
tion performance than MPCA. Therefore, MICA 
may improve the monitoring performance by 
extracting the key hidden variables that influence 
the process.4) In the SBR operation, the influent 
wastewater is fed into the reactor and mixed 
with already existing microorganisms. Therefore, 
the performance of the current batch highly depends 
on microorganism activity in the previous batches. 
In addition, the SBR process is subject to signi-
ficant disturbances like hydraulic changes and 
composition variations. Small changes in concen-
trations or flows can have a large effect on the 
kinetics of biological rations leading to batch-to-
batch variability in effluent quality and microor-
ganism growth. Compared to the previous ones, 
the MICA method provides more meaningful in-
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formation on the evolving biological process and 
captures the biological relation among batches, 
which results in more robust monitoring performance.

CONCLUSIONS

The SBR poses an interesting challenge for 
process monitoring of systems characterized by non-
stationary, batchwise, multiscale, and non-Gaussian 
characteristics. This paper presents the application 
of a batchwise monitoring of MICA to a pilot-
scale SBR. Three-way batch data from SBR is 
unfolded batch-wisely and then MICA is used to 
capture the non-Gaussian relation among batches. 
The results of this pilot-scale SBR monitoring 
system using simple on-line measurements clearly 
demonstrated that the batchwise MICA monitoring 
technique showed lower false alarm rate and 
physically meaningful, that is, robust monitoring 
results, since it can to extract meaningful hidden 
information from non-Gaussian data of a SBR. 
For integrated wastewater treatment management 
system, we are developing on-going research,16) 
that is, the integrated framework of data-driven 
statistical model, activated sludge models, and 
molecular microbiology information for sustainable 
wastewater treatment operation. It is able to detect 
the faults, to integrate the monitoring and control 
systems and to develop model-based optimization 
for sustainable operation. The proposed framework 
will be easily applied to a modular internet-based 
remote supervision and control system of other 
wastewater treatment plants. 
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Appendix A. Detailed algorithm of indepen-
dent component analysis 

In this appendix A, the detailed algorithm of 
independent component analysis is explained.  In 
the ICA algorithm, it is assumed that d measured 
variables x1,x2,…,xd can be expressed as linear 
combinations of m( d≤ ) unknown independent 
components  msss ,,, 21 Κ . The relationship between 
them is given by

 EASX += (A1)

where X )](,),2(),1([ nxxx Κ= ndR ×∈  is the data matrix 
(in contrast to PCA, ICA employs the transposed 

data matrix.), A=[a1,…,am] mdR ×∈  is the unknown 
mixing matrix, S )](,),2(),1([ nsss Κ= nmR ×∈  is the 
independent component matrix, E ndR ×∈ is the 
residual matrix, and n is the number of samples. 
Here, we assume md ≥  (when d=m, the residual 
matrix, E, becomes the zero matrix). The basic 
problem of ICA is to estimate both the mixing 
matrix A and the independent components S from 
only the observed data X. Alternatively, one 
could define the objective of ICA as follows: to 
find a demixing matrix W whose form is such 
that the rows of the reconstructed matrix Ŝ , 
given as

 WXS =ˆ (A2)

become as independent of each other as possible. 
Using the ICA algorithm, we can obtain the 

rows of Ŝ  whose norm is 1.12) 
Here, we assume that d equals m except 

where specified otherwise. The initial step in 
ICA is whitening (also known as sphering) 
which eliminates all the cross-correlations among 
random variables. Consider a d-dimensional random 
vector x(k) at sample k with covariance 

))()(( kkE TxxRx = . The eigen-decomposition of 
xR  is given by

TUUR x Λ= . (A3)

The whitening transformation is expressed as 

)()( kk Qxz = (A4)

where TUΛQ 2
1

−
= . One can easily verify that 

))()(( kkE TzzRz =  is the identity matrix under this 
transformation. After the whitening transformation 
we have

)()()()( kkkk BsQAsQxz === (A5)

where B  is an orthogonal matrix, as verified by 
the following relation: 

{ } { } TTTT kkEkkE BBBssBzz == )()()()( I= . (A6)
We have therefore reduced the problem of 

finding an arbitrary full-rank matrix A  to the 
simpler problem of finding an orthogonal matrix 
B , which then gives 

)()()( kkk TT QxBzBs == . (A7)

From Eqs. (A2) and (A7), the relation between 
W and B  can be expressed as

QBW T= . (A8)

To calculate B , this matrix is initialized and 
then updated so that s(k)=BTz(k) has great 
non-Gaussianity. There are two common measures 
of non-Gaussianity: kurtosis and negentropy. Kurtosis 
is sensitive to outliers, whereas negentropy is 
based on the information-theoretic quantity of 
(differential) entropy. Previously, a fast and robust 
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fixed-point algorithm has been proposed for ICA 
that entails maximizing the negentropy under the 
constraint of 1=ib , where ib  is the ith column 
of B . A detailed description of the FastICA 
algorithm based on maximizing the non-Gaussianity 
to calculate B  is given by Hyärinen11). After 
finding B , the demixing matrix W  is obtained 
using Eq. (A8).

Appendix B. Multivariate analysis and moni-
toring of the MICA model

In this appendix B, the detailed procedure of 
the multivariate analysis and monitoring scheme 
of the MICA model are followed to supervise the 
progress of a batch process. 

A. Develop the batchwise MICA model
 1. Acquire an operating data set during normal 

batch operation.
 2. Unfold )( KJI ××X  to )( JKI ×X  using batch-

wise unfolding scheme.
 3. Normalize the data )( JKI ×X  using the mean 

and standard deviation of each variable at 
each time in the batch cycle over all batches.

 4. Transpose the scaled )( JKI ×X . The transposed 
matrix is designated )( IJKnormal ×X .

 5. Apply the whitening procedure to acquire 
the uncorrelated whitened matrix

normalnormal QXZ = (A1)

where Ir
normal RI ×∈= )](,),2(),1([ zzzZ Κ , Here, we 

can extract r columns of U  in Eq. (7), r is 
the rank of the covariance matrix of normalX . 

 6. Carry out the ICA procedure to obtain the 
following matrices W , B , and normalS  so that 

)()( nn T zBs =  has great non-Gaussianity. 

normal
T

normalnormal ZBWXS == (A2)

where BQQ)(QA T1T −=  and QBW T= .
 7. Apply the ordering and dimension reduction 

of ICA. Thus, the dimension of the batchwise 
unfolded data matrix is reduced by selecting 
a few rows of W  based upon the assumption 

that the rows with the largest sum of 
squares coefficient have the greatest effect 
on the variation of S . The m rows of W  
which are separated into deterministic part 
of W (Wd), and the excluded part of W, 
(We). The resulting matrices have the 
following forms:

⎥
⎦

⎤
⎢
⎣

⎡
=

e

d
normal S

S
S

(A3)

   ⎥
⎦

⎤
⎢
⎣

⎡
=

e

d

A
A

A
(A4)

   
⎥
⎦

⎤
⎢
⎣

⎡
=

e

d

W
W

W
(A5)

8. Finally, the MICA model is constructed. For 
each batch of )( JKI ×X , )1( JK×′x  is projected 
into the reduced space of the MICA model. 
For all I batches, the ICs and residuals are 
calculated from Sd and SPE.

9. Calculate the I2 statistic:

)()()(2 iiiI d
T

d ss=  (A6)

where I1 ≤≤ i .
10. Calcualte the Q-statistic for a batch i, also 

known as the SPE statistic, is defined as 
follows:

( ) ( ))(ˆ)()(ˆ)()()()( iiiiiiiSPE TT xxxxee −−== (A7)

10. Obtain the control limits of the I2 and SPE 
statistics for off-line batch analysis using 
kernel density estimation.

B. Batch monitoring by the batchwise MICA  
model

 1. For a new batch data, )( JKtest ×X , batchwise 
unfold it to )1( ×KJtestX . Apply the same 
scaling used in the modeling. 

 2. For the scaled and filled matrix, )1( ×JKtestX , 
calculate the ICs of s testd

testdtestd i XWs =)( (A8)
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 3. Calculate the independent components and 
SPE of a test batch  )(2 iI testd  and )(iSPE

)()()(2 iiiI testd
T

testdtestd ss=  (A9)

∑
=

−=
KJ

j
predjtesttestiSPE

1

2)ˆ()( XX (A10)

where predddpred XWAx ˆˆ =  and predjx̂  is the jth 

element of predjX̂ .

 4. Compare the )(2 iI testd  and )(iSPE  statistics of 
a test batch with control limits of the MICA 
model.


