
Environmental Monitoring and Assessment (2006) 119: 349–366

DOI: 10.1007/s10661-005-9030-7 c© Springer 2006

ON-LINE ADAPTIVE AND NONLINEAR PROCESS MONITORING
OF A PILOT-SCALE SEQUENCING BATCH REACTOR

CHANG KYOO YOO1,2,∗, IN-BEUM LEE2 and PETER A. VANROLLEGHEM1

1BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Ghent
University, Coupure Links 653, B-9000 Gent, Belgium; 2School of Environmental Science and

Engineering, Department of Chemical Engineering, Pohang University of Science and Technology,
Pohang, Korea

(∗author for correspondence, e-mail: ckyoo@postech.edu, ChangKyoo.Yoo@biomath.ugent.be)

(Received 11 February 2005; accepted 23 August 2005)

Abstract. This article describes the application of on-line nonlinear monitoring of a sequencing

batch reactor (SBR). Three-way batch data of SBR are unfolded batch-wisely, and then a adaptive

and nonlinear multivariate monitoring method is used to capture the nonlinear characteristics of normal

batches. The approach is successfully applied to an 80 L SBR for biological wastewater treatment,

where the SBR poses an interesting challenge in view of process monitoring since it is characterized

by nonstationary, batchwise, multistage, and nonlinear dynamics. In on-line batch monitoring, the

developed adaptive and nonlinear process monitoring method can effectively capture the nonlinear

relationship among process variables of a biological process in a SBR. The results of this pilot-scale

SBR monitoring system using simple on-line measurements clearly demonstrated that the adaptive

and nonlinear monitoring technique showed lower false alarm rate and physically meaningful, that

is, robust monitoring results.

Keywords: adaptive batch monitoring, multiway kernel principal component analysis (MKPCA),

nonlinear biological process, sequencing batch reactor (SBR)

1. Introduction

The increase in environmental restrictions in recent times has led to an increase
in efforts aimed at achieving a better effluent quality of wastewater treatment
plants. Achieving this goal requires advanced monitoring of the plant performance.
Wastewater treatment plants are slow when they have to recover from a ‘bad’ state to
a ‘normal’ state. The early detection and isolation of faults in the biological process
is therefore very effective since it allows corrective action to be taken well before
the situation becomes dangerous. Some process changes are not very obvious and
may gradually grow until they become a serious operational problem. Process mon-
itoring and fault detection of the biological processes are very important tasks in
process engineering since they aim to ensure the success of the planned operations
and to improve the productivity of processes.

In recent industrial process plants, many variables are measured in various op-
erating units and are recorded in abundance. However, such data sets are highly
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correlated and are subject to considerable noise. In the absence of an appropriate
processing method, only limited information can be extracted, which causes in-
sufficient understanding of the process by the operator and may lead to unstable
operation. If properly treated, this data can provide a wealth of information leading
to keep the plant operators understand the status of the process and assist them
to make appropriate actions to remove abnormalities from the process (Rosen and
Lennox, 2001; Yoo et al., 2003).

Sequencing batch reactor (SBR) processes have demonstrated their efficiency
and flexibility in the treatment of wastewaters with high concentrations of nutri-
ents (nitrogen, phosphorous), and toxic compounds from domestic and industrial
sources. A SBR has a unique cyclic batch operation, usually with five well-defined
phases: fill, react, settle, draw and idle. Most of the advantages of SBR processes
may be attributed to their single-tank designs and the flexibility that allows them
to meet many different treatment objectives, and which is derived from the pos-
sibility of adjusting the duration of the different phases. Real-time control of the
SBR process can contribute to this. A possible control strategy is based on the
identification of the endpoint of a biological reaction. Switching to the next phase
shortly after the detection of the reaction endpoint provides an optimum solution
for both the process performance and the economics of the plant. In fact, if the du-
ration of a phase is too short, the removal of the pollutants is not complete and the
quality of the effluent will not meet the limits imposed by law. On the other hand,
cycles which are longer than necessary decrease the capacity of the plant (volume
of wastewater treated per day) or increase its operating costs; an aerobic phase
which is too long would also mean wasting energy for aeration (Wilderer et al.,
2001).

However, the SBR process includes dynamic behaviour that is highly nonlin-
ear, highly complex, carried out by a diverse microbial community, unpredictable
and is further compromised by the fact that the effluent concentration is difficult
to measure online and may only be available through offline laboratory analysis.
Also, the SBR process is subject to significant disturbances like hydraulic changes,
variability of influent composition, change in microbiological activity and equip-
ment failures. Small changes in concentrations or flows can affect the kinetics of
nonlinear biological reactions, which leads to batch-to-batch variability in effluent
quality and microorganism growth. Moreover, compared to continuous wastewater
treatment processes, SBR operation data have the added dimension of batch num-
ber, in addition to the measured variables and sample times (batches × variables ×
time), that is, a three-way matrix. Batch processes generally exhibit some batch-to-
batch variation in the trajectories of the process variables. Normal variation is due to
typical variations in the operation whereas special variations are due to exceptional
phenomena. However, treatment performance, the key indicator of process perfor-
mance, is often only examined off-line in a laboratory (Lee and Vanrolleghem,
2003; Yoo et al., 2004a). Even though operators are aware that there are some
problems in treatment performance, they cannot quickly find out or predict what
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the causes are and when the problems will occur because most batch processes are
run without any effective form of real-time on-line monitoring. Therefore, multi-
variate analysis and process monitoring of SBRs are crucial to detect faults that
can be corrected prior to completion of the batch or can be corrected in subsequent
batches because it may take several days, weeks or even months for the biological
process to recover from abnormal operation.

Multiway principal component analysis (MPCA) and multiway independent
component analysis (MICA) have been shown to be powerful monitoring tools
in many industrial batch processes (Nomikos and MacGregor, 1994; Yoo et al.,
2004a,b). However, they have the shortcoming that the measurement variables of
the batch process should be linear. Biological wastewater treatment is a complex,
nonlinear and multivariate process, where many hydrodynamic and biological re-
actions occur simultaneously. A new nonlinear batch monitoring technique, called
multiway kernel principal component analysis (MKPCA) has been emerging to
tackle the nonlinear problem in recent years (Lee et al., 2004). In this work, adap-
tive and multiway kernel principal component analysis (MKPCA), which extends
MKPCA to adaptive biological batch processes, is proposed to overcome this draw-
back to obtain better batch monitoring performance of the pilot-scale SBR. Kernel
PCA can efficiently compute principal components in high dimensional feature
spaces by the use of integral operators and nonlinear kernel functions. Three-way
batch data of the normal batch process are unfolded batch-wisely, and then the
nonlinear multivariate feature extraction method is used to capture the adaptive and
nonlinear characteristics within the SBR process.

2. Materials and Methods

2.1. KERNEL PRINCIPAL COMPONENT ANALYSIS (KPCA)

Kernel principal component analysis (KPCA) is an emerging technique to address
the nonlinear problems not dealt with by PCA. As shown in Figure 1, conceptu-
ally, KPCA first performs a nonlinear mapping �(·) from an input vector x to a
high dimensional feature space F and then a linear PCA is performed in this fea-
ture space, which extracts the principal components tk in a lower p dimensional
KPCA space. Given any algorithm which can be expressed solely in terms of dot
products, i.e. without explicit usage of the variables themselves, this kernel method
enables us to construct different nonlinear versions of it. Compared to other non-
linear methods, the main advantage of KPCA is that no nonlinear optimization is
involved. Based on these merits, KPCA has shown better performance than linear
PCA in feature extraction and classification including nonlinearity (Schölkopf et al.,
1998).

To derive KPCA, we first map the data xk ∈ Rm , k = 1, . . . , N into a fea-
ture space F where N is the number of samples and compute the covariance
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Figure 1. Conceptual diagram of KPCA.

matrix

CF = 1

N

N∑
j=1

�(x j ) �(x j )
T (1)

where �(·) is a nonlinear mapping function and it is assumed that �(xk) for k =
1, . . . , N is mean centered and variance scaled. Then, the principal components are
computed by solving the eigenvalue problem

λv = CF v = 1

N

N∑
j=1

〈�(x j ), v〉 �(x j ) (2)

where λ ≥ 0 denotes eigenvalues and v denotes the eigenvector of the covariance
matrix CF and 〈x, y〉 means dot product between x and y. For λ �= 0, solution v

(eigenvector) can be regarded as a linear combination of �(x1), . . . , �(xN ), i.e.,
v = ∑N

i=1 αi�(xi ). Multiplying �(xk) with both sides of Equation (2), we have

λ

N∑
i=1

αi 〈�(xk), �(xi )〉 = 1

N

N∑
i=1

αi

〈
�(xk),

N∑
j=1

�(x j )

〉
〈�(x j ), �(xi )〉 (3)

Using the kernel trick, [K]i j = Ki j = 〈�(xi ), �(x j )〉, the eigenvalue problem can
be expressed in a simplified form as,

Nλα = Kα (4)
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where α = [α1, . . . , αN ]T and K ∈ RN×N is a gram matrix which is composed
of Ki j . A justification of this procedure is given in Schölkopf et al. (1998). Then,
performing PCA in the feature space F is equal to resolving the eigenvalue problem
of Equation (4). This yields eigenvectors α1,α2, . . . ,αN with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λN . Dimensionality can be reduced by retaining only the first p
eigenvectors. The projection, i.e., score vector, of the kth observation in the training
data, is calculated by projecting �(x) onto the eigenvectors vk in F where k =
1, . . . , p.

tk = 〈vk, �(x)〉 =
N∑

i=1

αk
i 〈�(xi ), �(x)〉 (5)

To solve the eigenvalue problem of Equation (4) and to project from the input
space to the KPCA space using Equation (5), one can avoid the need for performing
the nonlinear mappings and computing both the dot products in the feature space
through introducing a kernel function, that is, k(x, y) = 〈�(x), �(y)〉. Representa-
tive kernel functions which satisfy Mercer’s theorem are the polynomial, sigmoid,
and Gaussian kernels.

2.2. OFF-LINE BATCH MONITORING USING MULTIWAY NONLINEAR

PROCESS MONITORING

Batch processes are, by nature, leading to a 3-way matrix (X(I × J × K )) of data. In
a typical batch run, j = 1, 2, . . . , J variables are measured at k = 1, 2, . . . , K time
intervals throughout the batch. There exists similar data on several (i = 1, 2, . . . , I )
similar process batch runs. MPCA needs to unfold this matrix in order to obtain a
two-way matrix, and then perform PCA. Figure 2 shows the unfolding method for
MPCA. By subtracting the mean of each column of the unfolded matrix (X(I ×
J K )), the mean trajectory of each variable is removed, so that the major nonlinear
behaviour of the process can be eliminated (Nomikos and MacGregor, 1994, 1995).
Once the matrix is mean centered and variance scaled and PCA is performed, the
results from PCA are the loading vectors and the calculated scores for each batch.

Figure 2. Unfolding method of MPCA for a three-way batch.
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The loading vectors have a weight for each variable at each time, representing the
history of the process. In this paper, KPCA instead of PCA to extract the nonlinear
structure of the unfolded matrix is used (Lee et al., 2003; Yoo et al., 2004c).

2.2.1. Batch Monitoring Based on MKPCA
Adaptive batch monitoring scheme based on MKPCA is as follows:

(1) Acquire normal operating data X(I × J × K ) and unfold it batch-wisely X(I ×
J K ).

(2) The data X(I × J K ) are normalized using the mean and standard deviation of
each variable at each time in the batch cycle over all batches.

(3) Given a set of JK-dimensional scaled normal operating data xk ∈ R J K ,
k = 1, . . . , I , compute the kernel matrix K ∈ RI×I by [K]i j = Ki j =
〈�(xi ), �(x j )〉 = [k(xi , x j )].

(4) Carry out mean centering in the feature space for
∑I

k=1 �̃(xk) = 0,

K̃ = K − EK − K1I + 1I K1I (6)

where each element of E is equal to 1/I.
(5) Carry out variance scaling in the feature space for 1

I−1

∑I
k=1 �̃scl(xk)2 = 1

K̃scl = K̃
trace(K̃)

I−1

(7)

(6) Solve the eigenvalue problem Iλα = K̃sclα and normalize αk such that
〈αk,αk〉 = 1

λk
.

(7) For normal operating data x at each batch, extract a nonlinear component via

tk = 〈vk, Φ̃scl(x)〉 =
I∑

i=1

αk
i 〈�̃scl(xi ), �̃scl(x)〉 =

I∑
i=1

αk
i k̃scl(xi , x) (8)

where �̃scl(x) is the mean centered and variance scaled feature vector of �(x).
(8) Calculate the monitoring statistics (T2 and SPE) at each batch and determine

control limits of T2 and SPE charts.

A measure of the variation summarized within the MKPCA model is given by
the Hotelling’s T2 statistic. T2 is the sum of the normalized squared scores, and is
defined as

T 2 = [t1, . . . , tp]�−1[t1, . . . , tp]T (9)

where tk is obtained from Equation (5), p is the number of PCs and Λ−1 is the
diagonal matrix of the inverse of the variances associated with the retained principal
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components. The confidence limit for T2 is obtained using the F-distribution:

T 2 ∼ p(I 2 − 1)

I (I − p)
Fp,I−p,α (10)

where I is the number of batches in the model, p is the number of principal compo-
nents, and α is the significance level. The measure of goodness of fit of a sample to
the PCA model is the squared prediction error (SPE), also known as the Q statistic.
In this paper, we used the simple calculation of SPE in the feature space F suggested
by Lee et al. (2004):

SPE = ‖�(x) − �̂p(x)‖2 (11)

where �̂p(x) = ∑p
k=1 tkvk is the reconstructed feature vector with p principal

components in the feature space. The confidence limit for the SPE can be computed
from its approximate χ2 distribution

SPE ∼ gχ2
h,α g = v/2m, h = 2m2/v (12)

where m and v are the estimated mean and variance respectively of the SPE from
the reference batches (Nomikos and MacGregor, 1994).

2.3. ON-LINE ADAPTIVE BATCH MONITORING USING ADAPTIVE MULTIWAY

KERNEL PRINCIPAL COMPONENT ANALYSIS

When a batch has been monitored, we only know the values from the beginning to
the current time. For on-line monitoring, however, test data should be completed
until the end of the batch. Several methods for variable trajectory estimation have
been proposed to complete the trajectories to the end of the batch. Nomikos and
MacGregor (1994, 1995) suggest three different ways of dealing with this prob-
lem, i.e. to complete the remaining of the batches: (1) zero deviations, (2) current
deviations (3) PCA projection method. Although the selection is dependent on the
characteristics of the batch process, the second or the third method suggested by
Nomikos and MacGregor (1994, 1995) is mainly used. For on-line monitoring, the
distribution of the T 2

k is approximated by Equation (10) and that of the SPEk can
be approximated by a weighted χ2 distribution of SPEk ∼ (vk/2mk)χ2

2m2
k/vk

, where

mk and vk are the mean and variance of the SPEk obtained for the data set used for
model development at time instant k (Nomikos and MacGregor, 1995). In this work,
adaptive and multiway kernel principal component analysis (MKPCA), which ex-
tends MKPCA to adaptive biological batch processes, is proposed to overcome this
drawback to obtain better batch monitoring performance.
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2.3.1. On-line Adaptive Batch Monitoring
The on-line adaptive batch monitoring procedure is as follows:

(1) For new batch data until time k, Xt (k × J ), unfold it to xT
t (1× Jk). Scale it with

the mean and the variance obtained from step 2) of the modeling procedure.
(2) Anticipate the future observations by the filling method which fills in all future

measurements with the current deviation from the average batch.
(3) Apply an adaptive mean updating approach with exponential weighted mov-

ing average was used to remove non-stationary mean. A previous batch
which lies within the 95% confidence limit is used to update the batch mean
trajectory.

(4) Given JK-dimensional scaled batch data xt ∈ R J K , we compute the kernel
vector kt ∈ R1×I by [kt ] j = [kt (xt , x j )] where x j is the scaled normal operating
data of the modeling procedures: x j ∈ R J K , j = 1, . . . , I .

(5) The test kernel vector kt is adaptively mean centered as follows;

k̃t = kt − 1t K − kt 1I + 1t K1I (13)

where K and 1I are obtained from step (4) of the modeling procedure.
(6) The adaptive mean centered kernel vector k̃t is variance scaled

k̃t scl = k̃t

trace (K̃)
I−1

(14)

(7) For the current batch xt , extract a nonlinear component via

tk = 〈vk, �̃scl(xt )〉 =
I∑

i=1

αk
i 〈�̃scl(xi ), �̃scl(xt )〉 =

I∑
i=1

αk
i k̃t scl(xi , xt ) (15)

(8) Calculate the monitoring statistics (T2 and SPE) of the current batch
(9) Monitor whether T2 or SPE of the current batch exceeds its confidence limit

calculated in the modeling procedure.

The procedures outlined above have various merits for on-line monitoring of
adaptive batch processes. First, batch disturbances will be easily detected because
the major nonlinear dynamics (mean trajectory) are removed in the preprocessing.
Second, MKPCA is used to capture the nonlinearity which occurs in the biological
metabolic reaction pathway, which contains the major nonlinear dynamic infor-
mation across batches. Third, the adaptive mean update through the batches is
considered to incorporate the evolving characteristics of the biological batch pro-
cess, which can contribute to ensuring consistent, long-term performance of the
monitoring system.
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Figure 3. Schematic diagram of the pilot-scale sequencing batch reactor.

2.4. SBR PROCESS

The data used in this research were collected from a pilot-scale SBR system shown
in Figure 3. A fill-and-draw sequencing batch reactor (SBR) with a 80-L working
volume is operated in a 6 h cycle mode and each cycle consists of fill/anaerobic
(1 h), aerobic (2 h 30 min), anoxic (1 h), re-aerobic (30 min) and settling/draw (1 h)
phases. The hydraulic retention time (HRT) and the solid retention time (SRT) are
maintained at 12 h and 10 days, respectively. The control of the duration/sequence of
phases and on/off status of peristaltic pumps, mixer and air supply are automatically
achieved by a Labview data acquisition and control (DAC) system. Six electrodes
for pH, oxidation-reduction potential (ORP), dissolved oxygen (DO), temperature,
conductivity and weight are connected to the system to check the status of the
SBR, where a set of on-line measurements is obtained every one minute. Thus, no
advanced nutrient or expensive measurement devices were installed in order to run
an on-line monitoring algorithm of the SBR process (Lee and Vanrolleghem, 2003;
Yoo et al., 2004a). The status of the SBR reactor is displayed on the computer
and the sensor signals are stored. In this research, we considered 150 batches in
the historical data set of the SBR. The adaptive batch monitoring algorithms were
applied to the three-way data array X with dimensions 150 × 6 × 300.

3. Results and Discussions

3.1. OFF-LINE BATCH MONITORING OF SBR

Figure 4 shows the Hotelling’s T2 and SPE charts of the MPCA and the MKPCA
method for all 150 batches with six on-line measurements. To make a fair
comparison, we used the same number of principal components for both the MPCA
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and the MKPCA. Sixteen principal components (PCs) in the MPCA model of six
on-line measurements were retained, explaining 96.6% of the variation of the input
space. MKPCA selected the Gaussian kernel, k(x, y) = exp(−‖x − y‖2/δ) with
δ = rmσ 2, where r is a constant determined by the process to be monitored which
is 10 in this research, m is the dimension of the input space, and σ 2 is the variance
of the data (Mika et al., 1999). Sixteen PCs in the MKPCA model were retained by
the broken-stick rule (Nomikos and MacGregor, 1994) with 92.87% of the variation
in the feature space explained.

Figure 4 shows the T2 and the SPE charts of the MPCA and the MKPCA model.
Compared to MPCA, MKPCA points to a lower number of abnormal batches in the
SBR. The T2 charts of MPCA and the MKPCA model show very similar monitoring
results. There are three batches (batches 3, 9, 33) which are different between SPE
charts of the MPCA and the MKPCA model. In the SPE chart, MPCA assigned five
batches as abnormal, i.e. being significantly different from the other batches, i.e.,
batches 4, 9, 33, 89, 131, whereas MKPCA assigned three batches as abnormal,
i.e., batches 89, 112, 131. When we checked the historical database, batches 89
and 131 were normal and batches 4, 9, 33, 112 were normal. This effect results
from the fact that MKPCA can effectively capture the nonlinear relationship among
batches. This result shows that the monitoring result from the SPE charts of MPCA
may suffer from an oversensitivity to normal batches when MPCA is applied to a
nonlinear process such as SBR.

There is a significant difference between the magnitude of SPE of the MPCA
and the MKPCA model. MPCA is not able to capture the nonlinear dynamics of the
SBR, which increases the modeling error of the MPCA. Compared to the MKPCA
model, a lot of batches of the MPCA model are in the vicinity of the 95% confidence
limit of the SPE values. This may come from the nonlinear biological kinetics
leading to batch-to-batch variability in effluent quality and microorganism growth.
On the other hand, MKPCA substantially extracts nonlinear principal components
and therefore allows spreading the information regarding the data structure more
widely giving a better opportunity to discard some of the eigendirections where the
nonlinear part of the data resides. Thus, the MKPCA model has much lower SPE
values than the MPCA model and MKPCA provides the nice capability of feature
extraction and denoising, yielding a robust monitoring system. This observation is
the confirmation of the nonlinear batch monitoring.

We can assess the impact of the nonlinearity through the use of QQ plots or
normality probability plot. To check the nonlinearity of the SBR due to the periodic
influent variations and nonlinear biological reactions, we checked the QQ plot of the
principal component (t2) of the MPCA and the MKPCA model which are composed
of only the normal batches. Figure 5 shows the QQ plot of the second score (t2)
of the MPCA and the MKPCA model. From this figure, we can deduce that the
SBR process has severe nonlinear dynamic relations and the extracted principal
scores of MPCA have a large deviation from linearity. It means that MPCA has
lower modeling ability which may lead to higher false alarm rate of a monitoring
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result of MPCA. On the other hand, MKPCA can extract the nonlinear principal
components, that is, capture the nonlinearity in SBR data.

3.2. ON-LINE ADAPTIVE MONITORING OF SBR

Based on the off-line analysis, 49 batches are modeled for the on-line monitoring of
MPCA and MKPCA. For fair comparisons, eight principal components were used
for both modeling. To fill in the future values in Xnew, we used filling method which
fills in all future measurements with the current deviation from the average batch.
A SBR process itself evolves over time as the microorganisms adapt to changing
operating conditions like surrounding temperature and varying process loads. This
often results in false alarms and significantly compromises the reliability of the
monitoring system. To overcome the problem of changing process conditions, an
adaptive mean updating approach with exponential weighted moving average was
used to remove non-stationary mean. This has contributed to ensuring consistent,
long-term performance of the monitoring system. In this approach, a previous
batch which lies within the 95% confidence limit is used to update the batch mean
trajectory. Then the MPCA and MKPCA models are tested against a new batch
using a 99% control limit. New on-line data of a batch of SBR are monitored for
every time point k with the monitoring charts based on the MPCA and MKPCA
model.

Figure 6 shows the on-line adaptive monitoring results of MPCA and MKPCA
with the 99% confidence limits in a particular, normal batch (batch number 30). The
batch is monitored for every time instant k in terms of its T2 and SPE charts. Both
MPCA and MKPCA show that the T2 charts for this batch are within the control
limits for the whole duration of the batch run. However, the SPE chart of MPCA in
Figure 6(a) exceeds the confidence limit one time, around the 60th sampling time,
that is, the MPCA invokes a false alarm. It results from the nonlinear phenomenon
occurring during the phase change (from anaerobic to aerobic). On the other hand,
the SPE chart of MPCA in Figure 6(b) does not show any violation for its confidence
limit during the whole duration of the batch run. Therefore, this batch in MKPCA is
assigned as being “in control” or “normal”. It illustrates that the selected nonlinear
principal components in MKPCA can extract the dynamic characteristics of the
SBR operation, i.e. the change from the anaerobic to aerobic phase.

Figure 7 represents the on-line adaptive monitoring results of the MPCA and
MKPCA model for an abnormal batch (batch number 60). Both methods can detect
this batch as an abnormal one from off-line monitoring (Figure 5). Both the MPCA
and MKPCA methods show similar detection times for this batch. The T2 and SPE
charts of MPCA in Figure 7(a) show that this abnormal batch has a large deviation
from the 61th time instant until the end of the batch operation, that is, the adaptive
monitoring result of MPCA calls that the fault continues until the end of the batch.
Indeed, the DO concentration in batch number 60 was increased too early (in the
anaerobic phase) but returned to the normal concentration during the aerobic phase,



362 C. K. YOO ET AL.

F
ig

ur
e

6.
O

n
-l

in
e

ad
ap

ti
v
e

m
o

n
it

o
ri

n
g

ch
ar

ts
fo

r
(a

)
M

P
C

A
an

d
(b

)
M

K
P

C
A

in
ca

se
o

f
a

n
o

rm
al

b
at

ch
(b

at
ch

n
u

m
b

er
3

0
).

T
h

e
d

o
tt

ed
li

n
es

co
rr

es
p

o
n

d
to

th
e

9
9

%
co

n
fi

d
en

ce
li

m
it

s.



ON-LINE ADAPTIVE AND NONLINEAR PROCESS MONITORING 363

F
ig

ur
e

7.
O

n
-l

in
e

ad
ap

ti
v
e

m
o

n
it

o
ri

n
g

ch
ar

ts
fo

r
(a

)
M

P
C

A
an

d
(b

)
M

K
P

C
A

in
ca

se
o

f
an

ab
n

o
rm

al
b

at
ch

(b
at

ch
n

u
m

b
er

6
0

).
T

h
e

d
o

tt
ed

li
n

es
co

rr
es

p
o

n
d

to
th

e
9

9
%

co
n

fi
d

en
ce

li
m

it
s.



364 C. K. YOO ET AL.

Figure 8. Univariate plot of on-line DO measurement of 49 normal batches and the abnormal

batch 60.

see Figure 8. A nonlinearity of the SBR system might cause this lasting false fault
detection. On the other hand, the SPE charts of AMKPCA in Figure 7(b) detects
this abnormal batch behaviour around the 80th time instant but returns below the
control limits around the 150th batch instant. It means that AMKPCA can detect
this fault during the aerobic phase and return within the control limits after the fault
is released.

This false alarm of MPCA comes from a bad modeling result. On the other
hand, MKPCA can detect a fault only during aeration phase which is a physically
meaningful and robust monitoring result. Hence, it results in less false alarms.
This result shows that the extracted 8 PCs of MKPCA capture the underlying
(nonlinear) factors from the SBR and push an abnormal batch outside the normal
operating region and again pull it into the normal operating region. Typically, the
false alarm rate of the MPCA is higher as a normal batch might be judged as a
non-conforming one. Therefore, this deteriorates the reliability of the monitoring
system. The above clearly showed that the nonlinear adaptive monitoring technique
can capture the nonlinear dynamics of the SBR better than linear MPCA. Figure 8
shows an univariate plot of the on-line DO measurements of the normal batches
and the abnormal batch 60 which was over-aerated at the start of the aeration phase.
Thus, when a fault is detected in biological batch process, the batch run will control
the current batch and moreover, operators will use the information on the fault to
correct the following batch.

In the SBR operation, the influent wastewater is fed into the reactor and mixed
with already existing microorganisms. Therefore, the performance of the current
batch highly depends on microorganism activity in the previous batches. In addition,
the SBR process is subject to significant disturbances like hydraulic changes and
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composition variations. Small changes in concentrations or flows can have a large
effect on the kinetics of biological rations leading to batch-to-batch variability in
effluent quality and microorganism growth. Compared to the previous ones, the
proposed method provides more meaningful information on the nonlinear evolving
biological process and captures the nonlinear relation among batches, which results
in more robust monitoring performance.

4. Conclusions

Biological wastewater treatment such as performed in SBRs is a complex, nonlinear
and multivariate process, where many hydrodynamic and biological reactions occur
simultaneously. Linear MPCA has the shortcoming that the measurement variables
of the batch process should be linear. The developed adaptive and nonlinear mon-
itoring method was successfully applied to an 80 L SBR. In off-line and on-line
batch monitoring, it can effectively capture the nonlinear relationship among pro-
cess variables. The results of the pilot-scale SBR monitoring study clearly showed
that the adaptive and nonlinear monitoring technique generates less false alarms,
physically meaningful and robust monitoring results in comparison to linear MPCA.
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