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Abstract

Ecosystem models, combining a food web model with a toxic effect sub-model, have been proposed to incorporate ecological

interactions in ecological effect assessments. Toxic effect sub-models in different studies tend to differ in (1) the used single-species

toxicity data, (2) the effects they consider, (3) the concentration–effect function used. In this paper, we constructed four ecosystem

models, each with a different toxic effect sub-model, and tested their capacity to predict biomass changes, and no observed effect

concentrations (NOECs) established in an experimental microcosm. For most populations, these predictions depended heavily on the

type of ecosystem model. The ecosystem model with a toxic effect sub-model incorporating mortality effects using a logistic

concentration–effect function made accurate predictions for most populations. Additional incorporation of sub-lethal effects did not

result in better predictions. Ecosystem models using linear concentration–effect functions predict biomass decreases at concentrations

that are four times lower than the observed NOECs.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

One of the major goals of ecotoxicology is the
assessment of the effects of a chemical substance on the
structure and function of ecosystems. Most of these
assessments rely on the extrapolation of single-species
effect data to higher-level effects. These extrapolation
methods are, however, based on largely unproven hypoth-
eses (Versteeg et al., 1999; Forbes and Calow, 2002). One
of the most salient assumptions is that the sensitivity of a
community can be represented by a set of independent
species sensitivities obtained in single-species toxicity tests
(Wagner and Lokke, 1991). This approach ignores
ecological relationships between populations in commu-

nities (e.g., Sommer et al., 1986; Preston and Snell, 2001;
Arhonditsis et al., 2004). In experimental ecosystems and
enclosures, toxic effects at the population- and community-
level were found to be determined by (1) the inherent
sensitivity of the species present; and (2) the ecological
relationships between the species (Chapman et al., 2003;
Fleeger et al., 2003). Hence, knowledge about these
ecological interactions should be incorporated in ecological
effect assessments in order to more accurately estimate
ecosystem effects of chemicals.
It is well known that large scale experimental studies, i.e.

mesocosm and field enclosure studies, are capable of
accounting for such ecological relationships in effect
assessments (Joern and Hoagland, 1996; Clements and
Kiffney, 1994; Drenner et al., 1993; Hoagland et al., 1993).
For instance, Shaw and Kennedy (1996) advocated their
use as a higher tier of ecological effect assessment in
the Federal Insecticide, Fungicide and Rodenticide Act
(FIFRA, US). However, given that this type of studies is
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very resource demanding they cannot be used as a routine
practice in lower tiers. Especially in view of REACH
(Registration, Evaluation and Authorization of Chemicals;
http://ecb.jrc.it/REACH/), EU-legislation aimed at asses-
sing the risks of approximately 30,000 substances to human
health and the environment, there is a clear need for
alternative, less resource-demanding methodologies to
extrapolate single-species effect data to ecosystem level
responses.

An obvious solution is the construction of ecosystem
models. These models consist of (1) a food web structure to
account for ecological interactions; and (2) toxic effect sub-
models to account for toxicant effects. Although the food
web structure of most existing ecosystem models is
relatively similar (e.g. Bartell et al., 1999; Traas et al.,
2004a), the design of their toxic effect sub-models exhibit
more variation. In general, the latter can be grouped into
two types: toxicokinetic and external concentration–
response functions. Toxicokinetic sub-models predict toxicity
based on accumulated toxicant concentrations, which are
estimated with kinetic uptake and elimination parameters
(Bartell et al., 1988; Traas et al., 1996 and 2004b).
Although this type of sub-models appears to be more
realistic, their application in effect assessments may
increase uncertainty instead of reducing it, as the para-
meter values used in these sub-models tend to be rather
uncertain (Hendriks, 1995a, b; Sijm and van der Linde,
1995). Other sub-models use external concentration–
response functions, established in single-species tests using
organisms that are taxonomically and ecologically repre-
sentative for the considered model populations. These
external concentration–response functions are used to
define the change of (selected) growth rate-determining
parameters of the populations at different exposure
concentrations. The magnitude of these changes depends
on the effect concentration (ECx) of the considered
population. The most frequently used type of single-species
effect data for invertebrates and vertebrates is the lethal
concentration for x-percent of the tested organisms (LCx).

Which growth rate-determining parameters are a func-
tion of the toxicant concentration depends on the chosen
approach. Traas et al. (2004a) choose to solely change the
mortality rates of the considered populations, while others
choose to make all growth rate-determining parameters
dependent on the toxicant concentration. The latter
approach is termed as the ‘‘general stress syndrome
(GSS)’’ and assumes that each physiological process is
equally impacted by the toxicant (e.g., O’Neill et al., 1982;
Bartell et al., 1988, 1992, 1999; DeAngelis et al., 1989;
Hanratty and Liber, 1996). As a result, all growth rate-
determining parameters are a function of toxicant con-
centration. Typically used single-species toxicity data are
LCxs. As such, only mortality effects are truly incorporated
in the toxic effect sub-model. A toxic effect sub-model
which explicitly accounts for both lethal and sublethal
effects on invertebrates and vertebrates was used by Traas
et al. (2004a). These authors make the mortality rates of

invertebrates a function of their LC50 or immobility-EC50s,
and make ingestion rates a function of immobility-EC50s.
Thereby, the assumption is made that increased immobility
implies a decreased ingestion rate.
A further differentiation between the various toxic effect

sub-models can be based on the type of concentration–
response function used. Reported functions include (1)
probit (Bartell et al., 1999); (2) linear (Hanratty and Liber,
1996; Naito et al., 2003); or (3) logistic functions (Traas
et al., 2004a). Since for most toxicants, lab-derived
concentration–response data exhibit a sigmoidal pattern
(Newman and Unger, 2003), a linear function does not
represent the actual concentration–response data. Naito
et al. (2003) argued that linear concentration–response
functions tend to overestimate single-species effects result-
ing in over-predictions of ecosystem effects. However, this
argument may not hold, because populations within an
ecosystem may not respond proportionally to increasing
toxicant concentrations (Landis, 2002). Moreover, since
the shape of a concentration–response function may be
indicative of the mode of action of a toxicant (Vanwijk and
Kraaij, 1994), the use of a linear function may also prohibit
a correct estimation of population and ecosystem effects.
Until now, no studies have examined the importance of

the above-discussed options when using ecosystem models
in ecological effect assessments and water quality standard
setting. In this paper, we constructed four ecosystem
models that have identical food web structures, but
different toxic effect sub-models. Their toxic effect sub-
models differ in the type of effect considered and in the
type of concentration–response function used. The poten-
tial use for ecological effects assessment of each of these
four ecosystem models was evaluated. To this end, the
accuracy in predicting population-level no observed effect
concentrations (population-NOECs) of the four ecosystem
models were tested through a comparison with population-
NOECs observed in a previously conducted microcosm
experiment with copper (Schaeffers, 2001). Subsequently,
ecosystem-NOECs were derived using the four ecosystem
models and these values were compared to the ecosystem-
NOEC observed in the microcosm experiment. Because the
process of water quality criteria setting seeks to determine
the maximum chemical concentration that is not likely to
result in adverse effects at the ecosystem level, the use of
NOECs in the present study was deemed appropriate. As
such, the four ecosystem models were evaluated for their
potential use in water quality standard setting and
ecological effect assessments.

2. Material and methods

2.1. Description of the studied microcosm

All data used were obtained in a community level
toxicity study with copper in aquatic oligotrophic micro-
cosms (for details, see Schaeffers, 2001). Briefly, indoor
aquatic microcosms with a volume of about 1m3 containing
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water (750L) and a sediment layer (20 cm), were perma-
nently exposed to six levels of copper sulphate (5, 10, 20,
40, 80 and 160 mgCuL�1); two replicates per concentration
were used. Biomass dynamics of various community
elements (phytoplankton, cladocerans, rotifers, copepods,
and the macrophyte Elodea densa), were monitored during
the 110 days exposure period. Four untreated replicates
were used as controls. Photoperiod (between 8 and
17 h day�1) and temperature (between 17 and 22 1C) were
controlled to simulate a season starting with spring and
ending with autumn.

2.2. Ecosystem model

A mechanistic dynamic ecosystem model was con-
structed in an object-oriented framework. The model
consists of a set of objects, and each object describes the
growth of a model population in terms of its total biomass
using differential equations. By connecting different objects
and defining the trophic links between them, a customized
food web was designed. The number of populations that
can be modelled is unlimited and available objects are:
phytoplankton, macrophytes, zooplankton, planktivorous
fish and piscivorous fish. Additionally, the growth kinetics
of these objects can be further differentiated by parameter
tuning (e.g., slow growing vs. fast growing). The phyto-
plankton object contains the processes photosynthesis,
respiration, excretion, mortality, sinking, and grazing by
zooplankton. The zooplankton object describes grazing on
phytoplankton and detritus, defecation, respiration, excre-
tion, mortality, and grazing by planktivorous fish. The fish
object describes grazing on zooplankton or planktivorous
fish, defecation, respiration, excretion, mortality, and

predation by piscivorous fish. All differential equations
are based on Park (1974) and USEPA (2000) and are
described in detail in the supporting documents. The
planktonic system used in the present study was composed
of two phytoplankton objects (small, fast-growing phyto-
plankton, versus large, slow-growing phytoplankton), one
macrophyte object and three zooplankton objects (rotifers,
cladocerans, copepods). Fish were not present in the
experimental system and were thus not included in the
constructed models. The differentiation of phytoplankton
based on their growth kinetics and the definition of their
trophic links within the ecosystem model is supported by
Sommer et al. (1986). These authors found that large-
bodied zooplankton (most copepods and cladocerans) can
graze on both small and large phytoplankton, while small-
bodied zooplankton can only ingest small phytoplankton.
These findings were imported in the ecosystem model by
means of preference factors (see supporting document for
detailed equations), which vary between 0 and 1, indicating
the fraction in the diet consisting of the respective food
source. The sum of preference factors per zooplankton
population equals 1. In our models, both copepods and
cladocerans have equal preference factors for small and
phytoplanktonlarge (i.e., 0.5). The preference factor of
rotifers (small zooplankton) for phytoplanktonsmall was
set to 1. The resulting customized food web was used for all
four ecosystem models evaluated in this study (Fig. 1).

2.3. Toxic effect sub-models: type of effects included and

type of function used

In the four ecosystem models, the toxic effect sub-models
include toxicant effects on maximal photosynthesis rate of
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Fig. 1. Scheme of the customized food-web representing the trophic links in the microcosm experiment performed by Schaeffers (2001). Numbers

alongside the arrows indicate zooplankton preferences for the respective food source. Technical implementation of these preference factors can be found in

the supporting documents.
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phytoplankton and macrophytes, and mortality effects on
macrophytes. In the LOGC and LINC ecosystem models,
both mortality and sublethal toxicant effects on inverte-
brates are included. In the other two ecosystem models,
LOG and LIN, only mortality effects are included. As
sublethal effect criterion for zooplankton, the toxicant-
induced effect on grazing rate is included as it is known to
be affected by copper (e.g., Ferrando and Andreu, 1993).
Next to the type of toxicant effect, also the type of function
used to represent these effects, varies between the four
ecosystem models. While LIN and LINC use linear
concentration–effect functions, LOG and LOGC rely on
logistic concentration–effect functions. The characteristics
of the toxic effect sub-models of the four ecosystem models
are summarized in Table 1.

2.4. Parameters of the toxic effect sub-models

Data on the effects of copper on aquatic biota were
collected from literature (Table 2). Because of the known
influence of water characteristics (e.g., pH, water hardness
and dissolved organic carbon (DOC) on copper toxicity
(e.g., Erickson et al., 1996; De Schamphelaere and Janssen,
2002; De Schamphelaere et al., 2002), all toxicity data were
normalized to the water characteristics of the microcosm
study. LC50s for cladocerans and rotifers were taken from
Ferrando and Andreu (1993) and LC50s for copepods were
taken from Heijerick et al. (2001). These LC50s were
normalized to the water characteristics of the microcosm
study using the acute Biotic Ligand Model (BLM)
proposed by De Schamphelaere et al. (2002). Normal-
ization of ingestion rate -EC50s for cladocerans and rotifers
(Ferrando and Andreu, 1993) was done using the chronic
BLM proposed by De Schamphelaere and Janssen (2004),
and De Schamphelaere et al. (2006). EC50s for copepod
ingestion rate were estimated by applying the relation
between acute and chronic toxicity data established by Brix
et al. (2001) to the acute copper-LC50s retrieved for
copepods (Heijerick et al., 2001). These ingestion rate
EC50s were subsequently normalized to the water char-
acteristics of the microcosm study using a chronic BLM

(De Schamphelaere and Janssen, 2004). The EC50s for
effects on photosynthesis rates of the phytoplankton and
the macrophyte were calculated as the mean of three
growth EC50s, predicted by three algal bioavailability
models (De Schamphelaere et al., 2003, 2006). In the
absence of experimental data, effects on macrophyte
mortality rate were taken from a previous study examining
copper effects on the same macrophyte (De Laender et al.,
submitted). A slope value for concentration–response
curves of metals was taken from Smit et al. (2001) and
assumed to be representative of the slope of concentra-
tion–response functions for both mortality and sublethal
effects. An overview of the used bioavailability normalized
toxicity data is presented in Table 2. Characteristics of
the microcosm water are provided in the supporting
documents.

2.5. Relative differences: control vs. treatments population

biomass

Initially, the dynamics of the unexposed customized
ecosystem were simulated. All four ecosystem models were
calibrated to obtain a plausible annual succession of
seasonal events, as described by Sommer et al. (1986).
These events are, chronologically: (1) spring bloom of
small phytoplankton, (2) bloom of small zooplankton,
resulting in a ‘clear water phase’, (3) a summer bloom of
large phytoplankton, followed by (4) a bloom of larger
zooplankton. The advantage of such an approach is that
no measured biomass dynamics are required for applica-
tion of the method. To obtain this succession of events,
growth related parameters of the different populations, i.e.
mortality rate and ingestion rate for invertebrates and
photosynthesis rate for phytoplankton and the macro-
phyte, were calibrated. A complete list of parameter values
can be found in the supporting documents. In a second
phase, we simulated an exposure to copper of this
customized ecosystem for a period identical to that used
in the microcosm experiment (110 days). To compare a
populations’ biomass status in the reference situation with
that in the different copper treatments, its biomass under
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Table 1

Equations used in the toxic effect sub-models of the four ecosystem models, LIN, LINC, LOG, and LOGC, with Pmax ¼ maximum photosynthesis rate at

a toxicant concentration ‘tox’ (d�1); Pmax,0 ¼ intrinsic maximum photosynthetic rate (d�1); tox ¼ toxicant concentration; EC50, pmax ¼ effect

concentration for a 50% reduction in photosynthesis rate; slope ¼ slope of the respective concentration-effect function; Kmort ¼ mortality rate at a

toxicant concentration ‘tox’ (d�1); Kmort0 ¼ intrinsic mortality rate (d�1); ln ¼ natural logarithm; time ¼ duration of toxicity assay (d); LC50 ¼ lethal

concentration for 50% of the organisms, as determined in the acute toxicity assay; Cmax ¼ maximum ingestion rate at a toxicant concentration ‘tox’ (d�1);

Cmax,0 ¼ intrinsic maximum ingestion rate (d�1)

Model Photosynthesis effect Mortality effect Ingestion effect

LIN Pmax ¼ Pmax;0 1� tox
2EC50;Pmax

n o
Kmort ¼ Kmort0 þ

ðlnð2Þ=timeÞ�Kmort0
LC50

tox –

LINC Cmax ¼ Cmax;0 1� tox
2EC50;Cmax

n o
LOG Pmax ¼

Pmax;0

1þðtox=EC50;PmaxÞ
slope Kmort ¼ 1

time
ln 1þ tox

LC50

� �slope� �
–

LOGC Cmax ¼
Cmax;0

1þðtox=EC50;CmaxÞ
slope

F. De Laender et al. / Ecotoxicology and Environmental Safety 69 (2008) 13–2316
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both scenario’s was averaged over the exposure period.
Relative differences of a populations’ biomass between the
control and the treatments were calculated as follows:

RDtox;i ¼
X tox;i � X ref ;i

X ref ;i
, (1)

with RDtox,i the relative difference of the average biomass
concentration of population ‘i’ when exposed to a toxicant
concentration ‘tox’, with its biomass concentration in the
control. Xtox,i the 110 day average biomass concentration
of population i, when exposed to a toxicant concentration
‘tox’. Xref,i the 110 day average biomass concentration of
population ‘i’ in the control, i.e. the reference value.

2.6. Comparison of experimental and predicted effects

To account for variability of each of the used single-
species toxicity test result, the four ecosystem models were
run in a Monte-Carlo setting. Characteristics of the
statistical distributions describing this variability are given
in Table 2. Using latin hypersquare sampling, 100
simulations per concentration were run. The number of
runs were determined using the stabilization of variances
(Cullen and Frey, 1999). After 60 to 80 runs, standard
deviations of all variables stabilized at all concentrations
and the control. As an example, plots of standard
deviations of the simulations vs. number of runs are
provided in Fig. 1 of the supporting document. Each of
these 100 simulations was compared with the reference
situation, yielding 100 RD values per model population
and exposure concentration. For all four ecosystem
models, predicted RD values for all populations as a
function of copper were compared with experimental RD
values obtained in the microcosm experiment. Derivation
of experimental RD values was done using the raw
microcosm data, applying the same methodology as that
used for the model predictions (Eq. (1)).

2.7. Derivation of experimental and predicted population—

NOECs

Because 20% is the minimum detectable difference in
population characteristics in the field (Suter II, 1993), a
RD-value of �0.2 or lower is considered as an observable
decrease of a population and a value of 0.2 or higher as an
observable increase of a population biomass. In the context
of ecological effect assessments, both increases and
decreases of phytoplankton biomass are considered un-
desirable: the former because of increased eutrophication
risk, the latter because of a loss of primary production. For
the macrophyte and invertebrates, biomass decreases are
considered as undesirable.
The NOECa for decrease of a populations’ biomass was

defined as the largest concentration at which less than 100
(1�a)% of the RD values for this population were smaller
than �0.2. This percentile was calculated by ranking RD
values and using the mean plotting position (Davison and
Hinkley, 1997). Similarly, the NOECa for increase of a
population, was defined as the largest concentration at which
less than 100 (1�a)% of the RD values for this population
were larger than 0.2. The effect of the a-level on the predicted
NOECs was investigated for a between 0.01 and 0.5.
To allow a relevant model-data comparison, experimen-

tal population-NOECs were derived from the raw micro-
cosm data using the same method as that used for the
derivation of predicted population-NOECs, i.e. using the
same 20% cut-off value for RD. The effect of the a-level on
the experimental NOECs was investigated for a between
0.01 and 0.5. As such, also experimental population-
NOECs will also vary with changing a.
Note that the as such derived NOECs differ from single-

species NOECs or ECxs in that they incorporate ecological
interactions, and as such take into account indirect
chemical effects. Single-species toxicity test results can
never account for such indirect effects.
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Table 2

Collected toxicity data after normalization to the water characteristics of the microcosm study

Model population Parameters of sub-models

Log(EC50, photosynthesis)

(mgL�1)
Log(LC50) (mgL

�1) Log(EC50, grazing rate)

(mgL�1)
Sm (�) Acute test

duration (days)

Phytoplanktonsmall 1.76 (0.20) – – 1 –

Phytoplanktonlarge 1.76 (0.20) – – 1 –

Macrophyte 1.76 (0.20) * – 1 *

Rotifers – 2.08 (0.30) 2.16 (0.30) 0.75–1.2 1

Copepods – 3.51 (0.30) 2.79 (0.30) 0.75–1.2 2

Cladocerans – 2.20 (0.30) 1.98 (0.30) 0.75–1.2 1

In the case of EC50’s and LC50’s, numbers represent the means of the normal distributions expressed as mgL�1, characterizing their variability. Numbers

between brackets represent the corresponding standard deviation, representing variability between BLM-predictions of the considered toxicity datum.

Variability of Sm values was characterized by uniform distributions, the characteristics of which can be found in Smit et al. (2001). Test duration

represents the reported duration of the acute mortality experiments. References of remaining toxicity data and of used models for normalization can be

found in the text.

*In absence of experimental data, effects on macrophyte mortality were taken from a previous study examining copper effects on the same macrophyte

(De Laender et al., submitted), resulting in macrophyte mortality rates of 1e�3; 1e�3; 1e�3; 2e�3; 1e�2; 1e�2–2e�2; 3e�2–4e�2 at 0; 5; 10; 20; 40; 80;

160mgL�1.

F. De Laender et al. / Ecotoxicology and Environmental Safety 69 (2008) 13–23 17
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2.8. Derivation of predicted and experimental ecosystem-

NOECs

The ecosystem-NOEC was defined as the lowest
population-NOEC. Exposure of the ecosystem to this
NOEC will consequently not adversely affect any of the
populations: i.e. phytoplankton will not increase or
decrease more than 20%, while zooplankton and the
macrophyte will not decrease more than 20%. The
predicted and experimental ecosystem-NOECs were de-
rived based on predicted and experimental population-
NOECs using the methodology discussed in the previous
paragraphs.

2.9. Comparison of the different toxic effect sub-models

Predicted population-NOECs were compared with ex-
perimental population-NOECs at a-levels of 0.01 to 0.5.
The degree of agreement between predicted and experi-
mental RD values, as well as between predicted and
experimental population-NOECs, was used to assess the
‘‘predictive’’ capacity of the four ecosystem models. Their
‘‘protective’’ capacity was examined by comparing pre-
dicted ecosystem-NOECs and experimental ecosystem-
NOECs. If an ecosystem model estimates the NOEC of
the most sensitive population correctly, while completely
misjudging effects on the other populations, its protective
capacity would be adequate, although its predictive
capacity would be low. That is, NOECs calculated by that
ecosystem model are protective for the whole ecosystem,
yet fail to correctly predict most population-level effects.
The predictive capacity of an ecosystem model can thus be
interpreted as a measure for its usability in ecological effect
assessments, where the main interest is on how toxicants
affect populations. The protective capacity of an ecosystem
model can be used to measure its applicability in water
quality standard setting that aims at determining a
maximum toxicant concentration that does not adversely
affect the ecosystem.

3. Results

3.1. Control vs. treatments population biomass:

phytoplankton and macrophyte

The microcosm data show that the phytoplanktonsmall

biomass increases with increasing copper concentrations
(Fig. 2). Up to 80 mgL�1, all four-ecosystem models predict
an increase of phytoplanktonsmall, although the observed
increase (300–1000%) is larger than the predicted increase
(100–200% for all four ecosystem models). At 160 mgL�1, a
complete collapse of phytoplanktonsmall is predicted,
although observations indicate an increase of 2000%.

Experimental RD values for the phytoplanktonlarge
decrease with increasing copper concentration, indicating
a loss of biomass (Fig. 2). Results from all four-ecosystem
models exhibit this decrease. Only at 20 mgL�1 the LOGC

model predicts the RD values marginally better than the
other three ecosystem models.
Decline of the macrophyte biomass with increasing

copper concentrations, as predicted by all four-ecosystem
models, is confirmed by the microcosm observations
(Fig. 2).

3.2. Control vs. treatments population biomass: zooplankton

The microcosm data indicate that cladoceran biomass
decreases drastically at concentrations X40 mgL�1 (Fig. 2).
At concentrations o40 mgL�1, experimentally observed
biomass concentrations are maintained at the control level.
This is predicted by the LOG model only. The LIN and
LINC models severely overestimate effects on cladocerans
at low concentrations.
The biphasic response of the copepods to the copper

exposure (i.e. an increase followed by a decrease) is both
reflected by the microcosm data and by the predictions of
all four-ecosystem models (Fig. 2). Experimental RDs at 5
and 10 mgL�1 are more accurately predicted by LOG and
LOGC than by LIN and LINC.
For rotifers, a disagreement between predicted and

experimental RDs is observed (Fig. 2). This can probably
be explained by the very low rotifer densities (o0.5 mgL�1)
in the microcosm experiment (Schaeffers, 2001). Loss of a
single organism will have a serious impact on their RD
values. It is therefore questionable whether the RD values
for rotifers, as derived from the microcosm data, give a
reliable reflection of copper effects on this group. Hence,
rotifer data and predictions were omitted for further
analyses.

3.3. NOEC derivations

The number of predicted population-NOECs exceeding
the corresponding experimental population-NOECs as a
function of a is shown in Fig. 3. This number can be
interpreted as a measure for underestimation of effects on
populations. At a 6¼0.35, LOG and LOGC underestimate
effects on two to three populations, while LIN and LINC
underestimate effects on only one population. A value of
0.35 appears to result in conservative NOEC estimates for
all ecosystem models and will, as an example, be used
to compare NOECs predicted with the four ecosystem
models.

3.4. Population-NOECs: phytoplankton and macrophyte

Both LIN and LINC estimate a NOECsmall phytoplankton

of 10 mgL�1, while LOG and LOGC predicts the
NOECsmall phytoplankton of 20 mgL

�1 accurately (experimen-
tal NOECsmall phytoplankton is 20 mgL�1). Predicted values
of NOEClarge phytoplankton (Fig. 4), differ most between
LIN/LINC and LOG/LOGC models. The latter predict a
NOEClarge phytoplankton of 20 mgL�1, while the former
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models result in NOEClarge phytoplankton of 10 mgL�1. The
experimental NOEClarge phytoplankton is 20 mgL�1 (Fig. 4).
At 40 mgL�1, all ecosystem models predict a significant

decline in macrophyte biomass, (Fig. 4). All ecosystem
models result in a NOECmacrophyte of 20 mgL

�1.

3.5. Population-NOECs: zooplankton

The absence of effects on cladoceran biomass observed
in the microcosms at concentrations of 5 to 20 mgL�1,
was only predicted by the LOG model (Fig. 4). The
NOECcladocerans derived with the LOG model was thus
equal to the observed value: 20 mgL�1. LOGC already
predicted an effect at 20 mgL�1, while according to both

ARTICLE IN PRESS

Fig. 2. Biomass changes, relative to a reference condition, as a function of copper for the six populations in the ecosystem: small phytoplankton (A); large

phytoplankton (B); the macrophyte (C); cladocerans (D); copepods (E); rotifers (F). Observed relative differences (RD) and associated standard errors are

indicated by E and error bars, respectively. A more detailed graph is added for the small phytoplankton biomass change as a function of copper

concentrations between 5 and 40 mgL�1 (A0). Line codes are given in the legend.

Fig. 3. The number of populations for which population-NOECs were

predicted higher by the models than those observed in the microcosm

study, for different alpha levels.

F. De Laender et al. / Ecotoxicology and Environmental Safety 69 (2008) 13–23 19
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LIN and LINC effects are expected at the lowest treatment
concentration (5 mgL�1).

The experimental NOECcopepods is 80 mgL
�1 (Fig. 4). At

80 mgL�1, a decline of copepod biomass is estimated by
LIN(C), resulting in a NOECcopepods prediction of
40 mgL�1. Application of the other two ecosystem models
yields a NOECcopepods equal to the experimental value.

3.6. Ecosystem-NOEC

As stated earlier, the ecosystem-NOEC is defined as the
lowest population-NOEC. From the microcosm data, an
experimental ecosystem-NOEC of 20 mgL�1 is derived.
Since the population-NOECs vary depending on the
ecosystem model applied, the ecosystem-NOEC also
differs. Ecosystem-NOECs predicted by the different
ecosystem models and that derived from the microcosm
study are shown in Fig. 4. From this, it is clear that the
LOG and LOGC models give better ecosystem-NOEC
predictions, compared to the values derived with the LIN
and LINC models. Yet, only the LOG model predicts the
ecosystem-NOEC accurately (20 mgL�1), while LOGC is a
factor 2 more conservative (10 mgL�1).

Application of LIN and LINC resulted in an ecosystem-
NOEC of o5 mgL�1, which is over 4 times lower than the
experimental ecosystem-NOEC.

4. Discussion

4.1. Control vs. treatments population biomass:

phytoplankton and macrophyte

The increase of phytoplanktonsmall in experimental
enclosures exposed to metals has also been observed by

Jak et al. (1996). However, according to the concentra-
tion–response functions (Table 1), copper does not increase
maximal photosynthesis rate (Pmax) of phytoplanktonsmall

at these concentrations. For example, at 40 mg copper L�1,
the concentration–response functions indicate a 30–40%
decrease of Pmax, while at this concentration, a phyto-
planktonsmall biomass increase of 150–250% is predicted.
As such, a decline of zooplankton biomass and hence a
reduced grazing pressure is proposed as an explanation for
this phenomenon.
In contrast with the increase of phytoplanktonsmall,

phytoplanktonlarge biomass is found to decrease with
increasing copper concentration. Yet, both phytoplank-
tonlarge and phytoplanktonsmall are grazed upon by the
same zooplankton (as rotifer biomass is negligible, see
previous paragraphs). Hence, they should experience the
same reduction of grazing pressure. Moreover, Pmax-EC50s
of both populations are the same (Table 2), indicating
equal direct copper effects on Pmax of phytoplanktonlarge
and phytoplanktonsmall. A possible explanation for the
decrease of phytoplanktonlarge biomass is therefore the
superiority of phytoplanktonsmall in competing for
nutrients, as observed in other experimental studies
(e.g., Havens, 1994a, b).

4.2. Control vs. treatments population biomass: zooplankton

The severe overestimation of effects on cladoceran
biomass by the LIN and LINC models (at low concentra-
tions) may be explained as follows. At low concentrations
the direct effect of copper on the cladoceran mortality rate
is overestimated by a linear concentration–response func-
tion. However, this does not necessarily imply an over-
estimated effect on cladoceran biomass within a food web,
since the latter effect also depends on ecological interac-
tions. Here, the competition with copepods for food, will
limit the biomass of the cladoceran population. Given their
lower sensitivity, copepods will have a competitive
advantage over the cladocerans, when exposed to copper,
limiting cladoceran biomass even more. The combination
of this food web-effect with the overestimated direct effects
on cladoceran mortality rate, results in an overestimation
of the copper effect on cladoceran biomass.

4.3. NOEC derivations

The large influence of alpha on the predictive capacity of
the four models originates from the small variability of the
microcosm data, compared to that of the ecosystem model
predictions. In general, coefficients of variation (CV’s) of
the ecosystem model predictions are a factor 5–7 larger
than CV’s of microcosm observations. The large variability
of the ecosystem model predictions hampers the early
detection of population effects at a=0.05–0.25, leading
to severe underestimations of effects. Yet, applying alpha-
levels of 0.4–0.5 on the microcosm data—which has a
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Fig. 4. Population-NOECs for small phytoplankton, large phytoplank-

ton, the macrophyte, copepods, and cladocerans as predicted by the four

models (lin, linc, log, and logc), observed in the microcosm experiment

(DATA). Ecosystem-NOECs are represented by the black bars. Values

ofo5 mgL�1 are plotted as 4mgL�1 and indicated by *.
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smaller variability would result in experimental popula-
tion-NOECs below 5 mgL�1.

The different predictions of the population-NOECs by
LIN, LINC and LOG, LOGC is probably due to the
overestimation of cladoceran decrease by LIN and LINC.
This overestimation results in an extremely reduced grazing
pressure, and hence in a NOEC for increase of phyto-
planktonsmall biomass that is too low. Note that also the
NOEC for increase of phytoplanktonsmall biomass is
predicted too low. The possible mechanism behind this
phenomenon is explained in the previous paragraph.

The difference between model predictions (predicted
NOECmacrophyte=20 mgL�1) and microcosm observations
(experimental NOECmacrophyte=40 mgL�1) may be due to
the use of a phytoplankton EC50 in the toxic effect sub-
models of this macrophyte.

4.4. Ecosystem-NOEC

The rather conservative prediction of the ecosystem-
NOEC by LIN and LINC is again due to the over-
estimation of effects on cladoceran biomass at lower
concentrations (NOECcladocerans of o5 mgL�1). Naito
et al. (2003), who used the comprehensive aquatic systems
model (CASM) equipped with a linear toxic effect sub-
model (i.e. comparable with the LIN model in this paper)
predicted an ecosystem-NOEC approximately 20 times
lower than the one measured in an artificial river system
exposed to copper. However, if this factor 20 might be
exclusively attributed to the use of a linear model is not
sure. Naito et al. (2003) used the lake Suwa food web to
predict copper effects in an artificial river system. As such,
the ecosystem represented by their model was not
representative for this artificial river system.

4.5. NOECs derived using other cut-off values

Because we acknowledge that the 20% cut-off value,
although often cited, is not definitive, NOECs-derivations
were a posteriori also performed using 10% and 30% cut-
off values. Using a cut-off value of 30% resulted in the
same experimental and predicted NOECs as when a 20%
cut-off value was used. When a cut-off value of 10% is
applied (Fig. 2, supporting document), only the
experimental NOECs of the macrophyte and of phyto-
planktonlarge are lower than those derived using 20% as a
cut-off. The experimental NOEC for decrease of the
macrophyte is 20 mgL�1 using the 10% cut-off. The
experimental NOEC for decrease of phytoplanktonlarge is
5 mgL�1 using the 10% cut-off. This last NOEC is
overpredicted by all four models. However, from Fig. 2B,
it can be seen that at 20 mgL�1, experimentally observed
biomass of phytoplanktonlarge returns to its control range.
Hence, it can be questioned if the experimentally observed
decrease at 10 mgL�1 is a copper effect, or results from data
variability. For all other populations, the use of a 10% cut-
off value resulted in the same conclusions regarding the

predictive capacities of the four models as when a 20% cut-
off value was used: the LIN and LINC models are
conservative and the LOG model is most accurate in
predicting NOECs.

4.6. Concluding remarks

Based on the comparison observed vs. predicted data
given in previous paragraphs, the largest differences in the
predictive capacity of the ecosystem models are attribu-
table to the different types of concentration–response
function. LOG and LOGC models gave more accurate
predictions of population-NOECs and ecosystem-NOECs
than LIN and LINC models, when using an alpha-level of
0.35. Apparently, implementation of the correct shape of
concentration–response functions is more important than
the inclusion of sub-lethal grazing effects. Indeed, the latter
resulted in only minor changes in biomass RD predictions.
The extent to which these findings can be extrapolated to
other ecosystems and toxicants is dependent on the
considered food web structure. In the food web used here,
overestimation of direct effects on cladocerans by the LIN
and LINC models resulted in inaccurate predictions of
connected phytoplankton populations. In a more complex
food web, one could expect two contrasting mechanisms.
On one hand, as observed in this paper, erroneous
estimations of direct effects on one population could
propagate to connected or competing populations. On the
other hand, the influence of trophic interactions on
biomass dynamics of the populations is assumed to be
lower in more diverse, and hence more complex food webs
(MacArthur, 1955). Which of these two phenomena will
dominate is difficult to predict based on only the number of
trophic links or ‘connectance’ within the food web.
This paper has shown the high accuracy with which

population- and ecosystem-NOECs for copper can be
predicted by the LOG model. Moreover, this LOG model
only requires a limited amount of standard single-species
ecotoxicity data comparable to the type of information
needed for ecosystem-NOEC determination using conven-
tional extrapolation techniques. The quality of the toxicity
data that are used is expected to influence the NOEC
predictions, but this is also the case with conventional
extrapolation techniques. In the LOG model, values for
LC50 and EC50, photosynthesis were combined with a slope
value for metals taken from literature (Smit et al., 2001). In
contrast, application of the LOG(C) model would require
additional single-species toxicity data on toxicant effects on
invertebrate ingestion rates, i.e. information that is not
always available in open literature.
As such, the model described in this paper relies on (1)

default ecosystem dynamics; and (2) single-species toxicity
test results to predict ecological effects at different chemical
concentrations. RD values can be predicted with this model
for every population at a series of different concentrations.
From these simulated RD-values, NOECs can be derived,
both on a population and ecosystem level. Nevertheless, if

ARTICLE IN PRESS
F. De Laender et al. / Ecotoxicology and Environmental Safety 69 (2008) 13–23 21



Author's personal copy

such NOEC-predictions are to serve as an alternative to
results from current statistical extrapolation techniques,
their validity has to be assessed in other, more complex
ecosystems and for other toxicant types. Indeed, as the
number of populations in a system increases, the quality of
the used single-species toxicity data and assumptions on
ecological interactions are expected to become more
important.
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