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Abstract

Species sensitivity distributions (SSDs) are statistical distributions which extrapolate single-species toxicity test results to ecosystem effects.
This SSD approach assumes that ecological interactions between populations, such as grazing and competition, do not influence the sensitivity of
ecosystems. The validity of this assumption in a simple freshwater pelagic ecosystem was tested using ecosystem modelling. For each of a 1000
hypothetical toxicants, a lognormal SSD was fitted to chronic single-species EC10s of the species present. As such, these distributions did not
account for ecological interactions and were therefore termed ‘conventional SSDs’ (cSSDs). Next, sensitivity distributions that did take into
account ecological interactions were constructed (eco-SSD) for the same 1000 toxicants, using an ecosystem model. For 254 of the 1000
hypothetical toxicants, mean and/or variance of the cSSD were significantly higher than mean and/or variance of the eco-SSD, as such rejecting
the general validity of the tested assumption. A classification tree approach indicated that especially toxicants which directly affect phytoplankton
(i.e. herbicides) may have a higher mean for cSSD than for eco-SSD. Conversely, means of eco-SSD and cSSD tend to be equal for toxicants
directly affecting zooplankton and fish, e.g. insecticides. For the 254 hypothetical toxicants for which the tested assumption was false, a predicted
no effect concentration (PNEC) calculated as the lowest single-species EC10 divided by an application factor of 10 was on average a factor 10
lower than the corresponding ecosystem-NOEC calculated by the ecosystem model.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Ecological effect assessments aim at evaluating or predicting
the effects of a chemical substance on the structure and function of
ecosystems. In environmental risk assessments, these “higher-level
effects” are usually estimated by extrapolation of single-species
effect data. Statistical models are used to perform such extrapola-

tions and are known as ‘species sensitivity distributions’ (SSDs). A
set of assumptions is associated with both the underlying theory
and the application of SSDs (Forbes and Calow, 2002). These
assumptions can be divided into (1) T-assumptions, i.e. related to
the theory underlying the SSD methodology, and (2) P-assump-
tions, i.e. related to the way the SSD methodology is applied in
practice (Forbes andCalow, 2002). Several authors have examined
these assumptions experimentally (e.g., Duboudin et al., 2004a;
Hose and van den Brink, 2004, Versteeg et al., 1999). However, it
has been more common to investigate the implications of a
violation of an assumption for water quality standard derivation
(e.g.,Duboudin et al., 2004a; Forbes et al., 2001; Hose and van den
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Brink, 2004; Maltby et al., 2005) than to test the validity of the
assumption itself (e.g. Newman et al., 2000; Selck et al., 2002).
Also, efforts are skewed towards the testing of ‘P-assumptions’
(e.g., Kefford et al., 2005; Maltby et al., 2005; Duboudin et al.,
2004a; Forbes et al., 2001; Hose and van denBrink, 2004). Studies
on assumptions related to the theoretical background of SSDs, i.e.
‘T-assumptions’ are scarce. Until now only assumption T3, i.e. that
ecosystem structure is equally or more sensitive than ecosystem
function, has been tested (Selck et al., 2002; Balczon and Pratt,
1994).

In this paper, the assumption T1 will be tested, i.e. that
ecological interactions between species do not influence the
parameters of the sensitivity distribution. A “conventional” SSD is
based on single-species toxicity test results (hereafter termed
‘cSSD’) and considers species as isolated entities without taking
into account possible ecological interactions between populations.
If ecological interactions between species do not influence the
sensitivity distribution (i.e. if T1 is valid), a sensitivity distribution
that does take into account ecological interactions should be the
same as the cSSD, i.e. parameters describing both distributions
should be the same.

In the present study we constructed cSSDs for 1000
hypothetical toxicants. Each cSSD was based on single-species
toxicity test results of phytoplankton, zooplankton, and fish. In
parallel, sensitivity distributions taking into account ecological
interactions between species, here termed “eco-species sensitivity
distributions” (eco-SSDs) were constructed for the same 1000
toxicants. Eco-SSDs were based on no observed effect concen-
trations (NOECs) for the populations present in the ecosystem, as
such taking into account ecological interactions. These popula-
tion-NOECs were calculated by an ecosystem modelling
approach. A comparison between the parameters of eco-SSDs
and cSSDs was performed to test assumption T1. Statistical
analyses were used to examine the relationship between validity
of T1 and toxicant type.

2. Materials and methods

2.1. Considered ecosystem

The ecosystem for which hypothesis T1 was tested is a simple lentic pelagic
system consisting of populations of one fish species, three zooplankton species
(two are slow growing, one is fast growing) and two phytoplankton species (one
is slow growing, one is fast growing).

2.2. Ecosystem model

A mechanistic dynamic ecosystem model was constructed using an object
oriented framework. The model consists of a set of objects, where each object
describes the growth of a population in terms of its total biomass using
differential equations based on USEPA (2002). By connecting different objects
and defining the trophic links between them, a customized food web can be
designed. Additionally, the growth kinetics of these objects are differentiated by
parameter tuning (slow growing populations vs. fast growing populations). A
detailed overview of all model equations can be found in the supporting
documents. The ecosystem modelled in the present study included two
phytoplankton objects (spring phytoplankton: small-celled and fast growing;
and summer phytoplankton: large-celled and slow growing), three zooplankton
objects (rotifers: fast growing; large cladocerans: slow growing; large copepods:
slow growing), and one planktivorous fish object. Ecological interactions were

set according to Sommer et al. (1986). Large-bodied zooplankton (most
copepods and cladocerans) graze on both small and large phytoplankton, while
small-bodied zooplankton can only ingest small phytoplankton. Planktivorous
fish preferred large-bodied over small-bodied zooplankton as food source
(Werner and Hall, 1974; Chang et al., 2004). The resulting customized food web
is shown in Fig. 1.

The ecosystem model was calibrated to obtain a realistic succession of
seasonal events for this type of system, as described in Sommer et al. (1986).
These events are, (1) bloom of spring phytoplankton, (2) bloom of small
zooplankton, resulting in a ‘clear water phase’, (3) a bloom of summer
phytoplankton, followed by (4) a bloom of larger zooplankton, and (5) a small
peak of fish. Parameter values resulting in population dynamics reflecting those
events are given in the supporting document.

The toxic effect sub-models embedded in the ecosystem model, consist of
logistic concentration–effect functions describing the effects of the toxicants on
the parameters of the ecosystem model. Modelling the dynamics of an exposed
ecosystem is performed by adjusting these parameters according to the
concentration–effect functions and the exposure concentration. Parameters in
the ecosystem model, that vary as a function of toxicant concentration are (1) the
mortality rate of zooplankton and fish, and (2) the photosynthesis rate of
phytoplankton. An overview of the equations of the toxic effect sub-models and
the values assigned to their parameters is given in Table 1.

2.3. cSSD vs. eco-SSD for one hypothetical toxicant

Assume that for a toxicant tx1, all chronic EC10s of all possible aquatic
species, are represented by a lognormal species sensitivity distribution SSD1

with a mean μ1 and a standard deviation σ1: SSD1f l1; r1ð Þ:
As for any toxicant, the parameters of SSD1 are not known, as it is

impossible to subject each and every species to toxicity testing. Instead, these
parameters have to be estimated experimentally by testing the sensitivity of only
a small fraction of all possible species. It was thus assumed that for tx1, chronic
EC10s had been experimentally derived for standard test species which are
representative for the populations in the considered ecosystem. As too little is
known about the sensitivity of standard test species relative to that of untested
species, 6 EC10s were sampled randomly from SSD1. To estimate the parameters

Fig. 1. Food web diagram of the considered ecosystem. Nodes represent the
populations present and lines represent feeding links between them. The
preference of a population for a connected population is given by the preference
factor alongside the connection. Zooplankton and phytoplankton are coded by
“zoo” and “phyto”. “Small” and “large” indicate dimensions of zooplankton
organisms. “Spring” and “summer” indicate when the considered phytoplankton
population blooms.
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of the “true” SSD1, a conventional species sensitivity distribution (cSSD1) was
fitted to this set of 6 EC10s:

cSSD1f bl1;br1

� �
with:

E bl1

� � ¼ l1

E br1

� � ¼ r1:

Next, the same 6 EC10s were used in the toxic effect sub-models of the 6
populations in the ecosystem model (Table 1). With the as such parameterized
ecosystem model, the dynamics of these populations at different exposure
concentrations of tx1 were predicted. Exposure concentrations ranged from the 1st
to the 95th percentile of SSD1. The exposure period was from late spring to late
summer, i.e. comparable to many large-scale studies. To compare the biomass
status of a population in the unexposed (reference) situation with its status at the
different exposure concentrations, relative differences (RDs) were calculated:

RDtx;p ¼ Xtx;p � Xref ;p

Xref ;p
ð1Þ

with:

Xtx,p the time-averaged biomass concentration of population ‘p’, when
exposed to a toxicant concentration ‘tx’

Xref,p the time-averaged biomass concentration of population ‘p’ in the
unexposed case, i.e. the reference value

Because 20% is the minimum detectable difference for most population
characteristics in the field (Suter, 1993), RD-values of −0.2 or lower were
considered as detectable decreases of biomass. Similarly, RD-values of 0.2 or higher
were considered as detectable increases of biomass. In the context of ecological
effect assessments, both increases and decreases of phytoplankton biomass were
considered undesirable: the former because of an increased eutrophication risk, the
latter because of a loss of primary production, a key process in pelagic aquatic
ecosystems. For fish and zooplankton, biomass decreases were considered as
undesirable. The NOEC of a population, hereafter termed ‘population-NOEC’, was
defined as the highest concentration at which no observable undesired effect was
predicted for that population. Note that these population-NOECs were determined
using an ecosystemmodel, as such taking into account ecological interactions in this
NOEC calculation. A cumulative plot of those 6 population-NOECswas defined as
the eco-Species Sensitivity Distribution for tx1 (eco-SSD1):

ecoQSSD1f l1;ecor1;eco
� �

:

Using these definitions, the hypothesis T1 was rephrased as:

bl1 ¼ l1;ecoKbr1 ¼ r1;eco:

Consequently, the validity of T1 was tested for tx1 using two-sided t and F-
tests and a p-level of 0.05.

2.4. Extension to 1000 hypothetical toxicants

The methodology described in the previous paragraph was followed for
toxicants txi from tx1 to tx1000. SSD1 to SSD1000 differed in mean but had the same
standard deviation (σ1=σ2=…=σi=…=σ1000=1). A standard deviation of one
order of magnitude is representative for SSDs of many chemicals (e.g. examples in
Duboudin et al., 2004b). The means of the 1000 toxicants were sampled from a
lognormal distribution with mean −0.43 and standard deviation 0.92. These
variability settingswere calculated fromGonzalez-Doncel et al. (2006) frommeans
and standard deviations of NOEC values of fish (n=343), crustaceans (n=414),
and algae (n=186) for all toxicants included in different toxicity databases.

2.5. Comparing ‘safe concentrations’ derived from cSSD with ecosystem-
NOECs derived from the ecosystem model

We tested if ‘safe concentrations’ derived from a cSSD, i.e. not accounting
for ecological interactions, were different from their corresponding ecosystem-
NOECs, i.e. accounting for ecological interactions.

A predicted no effect concentration (PNEC) based on the cSSDwas established
by means of two frequently used methods: (1) using the lowest of the 6 chronic
single-species EC10s (which represent three trophic levels), divided by an
application factor of 10 (AF−PNEC) and (2) the left side 50% confidence limit of
the hazardous concentration for 5% of the species (HC5−PNEC), as inWagner and
Lokke (1991). Note that the AF−PNEC was derived based on EC10 data, in the
absence of single-species NOEC data, as proposed by the TGD (EU, 2003). The
ecosystem-NOEC was defined as the lowest population-NOEC in the eco-SSD:
when exposed to this ecosystem-NOEC, no population will experience an
observable biomass decrease, according to ecosystem model predictions.

2.6. Relationship between toxicant type and validity of T1

Here, we examined whether the validity of T1 is related to the type of
toxicant. Toxicant type was arbitrarily defined here on the basis of the relative
sensitivity of the considered species for the toxicant. In this context, the relative
sensitivity is defined by the following two quantities:

rPZ ¼logEC10;phytoplankton

� ��logEC10;zooplankton

� �
rZF ¼logEC10;zooplankton

� ��logEC10;fish

� �
with log(EC10,phytoplankton) and log(EC10,zooplankton) equal to the logarithm of the
geometricmean of the EC10 values of the two phytoplankton and three zooplankton
species, respectively. These quantities are an indication of which species are
directly targeted by the toxicant. For example, a toxicant with a value of −2 for rPZ
(EC10,phytoplankton is two orders of magnitude smaller than EC10,zooplankton)
primarily targets phytoplankton, e.g. a herbicide. We examined if the validity or
violation of T1 was related to toxicant type, i.e. to rPZ and rZF. This was performed
using two associated statistical approaches: discriminant analysis and classification
trees.

Stepwise discriminant function analyses (Jennrich, 1977) were used to
determine which variable (rPZ or rZF) discriminates best between two or more

Table 1
Equations used in the toxic effect sub-models of the applied ecosystem model, with Pmax=maximum photosynthesis rate (d−1); Pmax,0= intrinsic maximum
photosynthetic rate (d−1); tox=toxicant concentration; EC50, pmax=effect concentration for a 50% reduction in photosynthesis rate; slope=slope of the respective
concentration–effect function; Kmort=mortality rate (d−1); ln=natural logarithm; time=duration of toxicity assay (d), set to two days for all zooplankton and fish;
LC50= lethal concentration for 50% of the organisms, as determined in the acute toxicity assay; LCR=Ratio of “lethal effect concentration” to “chronic effect
concentration”

Phytoplankton: effect on photosynthesis Zooplankton and fish: effect on mortality rate

Pmax ¼ Pmax;0

1þ tox
EC50;Pmax

� �slope Kmort ¼ 1
time �ln 1þ tox

LC50

� �slope
� 	

EC50;Pmax ¼explnEC10;Pmax

� �� 1
slope � ln 1

9

� �� �
LC50
EC10

¼ LCR

Values for LCR (6.1 for zooplankton and 9.5 for fish) were found in Lange et al. (1998). Values for slope (1.8 for all populations) were found in Smit et al. (2001). EC10

values were randomized (see methodology).
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groups. In a first analysis, these variables were rPZ and rZF and the two groups
were toxicants txi for which the means of cSSD and eco-SSD are equal
(bl i ¼ leco;i; group 0) and those for which the means of cSSD and eco-SSD
differ (bl ipleco;i; group 1). In a second analysis, the variables were again rPZ and
rZF, but now, the two groups were toxicants txi for which the standard deviations
of cSSD and eco-SSD are equal (br i ¼ ri;eco; group 2) and those for which the
standard deviations of cSSD and eco-SSD differ (br i p ri;eco; group 3). Because
in both analyses there are only two groups, the stepwise discriminant function
analyses are analogous to multiple regression. In a two-group case a linear
function is fitted to the data. For example, in the first analysis this function is:

Group ¼ aþ b1 � rPZ þ b2 � rZF
where a, b1 and b2 are coefficients that are changed so that rPZ and rZF predict if a
toxicant belongs to group 0 or 1.Note that ‘Group’ is a binary variablewhich can only
have 0 or 1 as value. After this fitting procedure, the variable with the largest
(standardized) regression coefficient is that one that contributes most to the prediction
of group membership. This variable will thus have the highest discriminative power.
Partial lambda values were calculated for rPZ and rZF to indicate the discriminating
power of these two variables. A partial lambda value of 0 indicates a perfect
discriminative power, and 1 indicates no discriminative power at all.

Next, a classification tree based on rPZ and rZF was built in order to classify
toxicants into groups 0 and 1 (Breiman et al., 1984). The same was done to
classify toxicants into groups 2 and 3. A classification tree is a data mining
technique to classify cases, in this case toxicants, into groups based on a set of
variables, in this case rPZ and rZF. A classification tree consists of a set of split
conditions which are connected by branches (Fig. 3). To classify a toxicant into a
group, one starts at the top split condition and runs through the tree until an end
node is reached. This end node shows the group into which the toxicant is
classified. Split conditions are based on the variables considered in the analysis,
in this case rPZ and rZF and determine how the tree should be ran through. The
rPZ and rZF values of two-third of the 1000 toxicants together with their group
membership (e.g. group 0 or 1) were used to construct the tree. This two-third is
called the training-set. Split conditions were calibrated to maximize the amount
of correctly classified training-set toxicants. Afterwards, the remaining one-third
of the 1000 toxicants (test-set), i.e. not used in the tree development, was used as
a cross validation of these split conditions. The results of this cross validation
reflect the predictive capacity of the constructed trees. Note that the ratio of
group 0 toxicants vs. group 1 toxicants was equal between training-set and test-
set, as demanded by the classification tree-methodology. This was also the case
for the ratio of group 2 toxicants vs. group 3 toxicants.

3. Results and discussion

3.1. Mean and variance of cSSD and eco-SSD

For 254 of the 1000 toxicants, the mean and/or variance of the eco-
SSDwere significantly different from those of the corresponding cSSD.
In 190 cases, the mean of the cSSD was significantly different from that
of the eco-SSD. In 94 cases, the variance of the cSSD was found to be
significantly different from that of the eco-SSD. In 30 cases, both mean
and variance of the cSSD were found to be significantly different from
those of the eco-SSD. In an a posteriori re-analysis, one-sided t and F
testing revealed that all significant differences indicated higher means
and standard deviations for cSSD than for eco-SSD, i.e.:bl N ceco;i andbr N ri;eco. Therefore, in the results of the discriminant analysis and
decision tree approach, groups 0 and 1 were redefined as toxicants for
which bl N ceco;i and those for which bl N ceco;i, respectively. Similarly,
groups 2 and 3 were redefined as toxicants for which bri N ri;eco and
those for which br N ri;eco, respectively. The difference between bli and
μeco,i was on average 0.6 log-units and the difference between bri and
σi,eco was on average a factor of 3. Power analysis (Statistica software,
Statsoft, Tulsa, Ok) of the t and F-tests with α=0.05 and N=6 revealed
that the statistical power of detecting such differences was about 0.8.

The reason that for none of the 1000 toxicantsbri was found to be lower
than σi,eco has to be sought in the inclusion of ecological interactions in
the eco-SSD. Indirect effects caused by ecological interactions make the

sensitivity of the considered populations interdependent. Fleeger et al.
(2003) cite 47 experimental large-scale studies in which effects on one or
more pelagic populations indirectly affect other pelagic populations, and
hence make sensitivities of the species present interdependent. For
example, Hamilton et al. (1988) found that a reduction of the abundance
of phytoplankton species by the herbicide atrazine resulted in a parallel
decrease of ecologically related zooplankton species, although the latter
was not directly affected by the toxicant at the tested concentrations. van
Donk et al. (1995) noticed an increase of phytoplankton because of
reduced zooplankton grazing pressure after application of the insecticide
chlorpyrifos. In the context of the present study, this should be interpreted
as follows: in a cSSD for “a herbicide”, the EC10s of zooplankton species
are located in the higher percentiles, as those are not directly targeted by
the toxicant. In contrast, in an eco-SSD for a herbicide, the population-
NOEC of the zooplankton is located close to the population-NOECs of
their food source (phytoplankton). The same reasoning can be followed in
the case of an insecticide, where ecological interactions will bring the
population-NOEC of phytoplankton populations close to the population-
NOECs of related zooplankton populations. These shifts in sensitivity
explain the lower variance of eco-SSDs compared to the cSSDs.

3.2. Comparing ‘safe concentrations’ derived from cSSD with
ecosystem-NOECs derived from the ecosystem model

PNECs derived as the lowest single-species EC10 divided by an
application factor of 10 (AF-PNECs)were, on average, 10 times lower than
the corresponding ecosystem-NOECs. For 769 of the 1000 considered
toxicants, HC5−PNECswere found to be, on average, a factor 3 lower than
the corresponding ecosystem-NOECs. For 95 of the 190 toxicants for
which only the bli N leco;i, the HC5 was larger than the ecosystem-NOEC.
For all toxicants for which onlybri N ri;eco, the HC5was found to be smaller
than the ecosystem-NOEC. For 28 of the 30 toxicants for which bothbli N leco;i and br i N ri;eco, the HC5 was larger than the ecosystem-NOEC.

In a comparison of HC5s derived from SSDs with experimentally
derived ecosystem-NOECs, Versteeg et al. (1999) found the former to be
consistently lower than the latter, a finding which is also observed by
Hose et al. (2003) and Selck et al. (2002). However, in a comparison of
HC5s with ecosystem-NOECs for 6 insecticides, Maltby et al. (2005)
found the latter to be lower than the former for continuous exposure to
lindane and fenvalerate. Thus, literature indicates that, although cases
exist in which the HC5 is higher than an experimentally derived
ecosystem-NOEC, these cases are scarce. The probability that this will
occur is probably lower than what the results in this paper suggest. A
reason for this might be that in the cited studies, cSSDs were constructed
using more species than those present in the experimental ecosystem
study. For example, Selck et al. (2005) included single-species fish-ECxs
to construct cSSDs for LAS and TBT. A subsequent comparison with
NOEC data obtained in ecosystem-level studies without fish revealed a
highly protective HC5s. For that reason, Posthuma et al. (2002) have
suggested to carefully consider the composition of the ecosystem to be
protected when constructing a cSSD. In our work, EC10s in the cSSD
were assumed to be representative for the sensitivity of the species in the
considered ecosystem model. As such, it was possible to test T1, and
exclude possible effects of species composition of the cSSD.

3.3. For which toxicants is T1 valid? Discriminant analysis approach

When rPZ and rZF values of the 1000 considered toxicants are
plotted (Fig. 2), it appears that the power to discriminate between group
0 toxicants (i.e. for whichbl N ceco;i) and group 1 toxicants (i.e. for whichbl N ceco;i) is larger for rPZ than for rZF. Group 1 toxicants are primarily
located left from rPZ=0, while group 0 toxicants are located slightly
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more to the right of rPZ=0 (Fig. 2A). Indeed, the partial Lambda values
of rZF (0.89) and rPZ (0.68 (b0.89)) indicate that rPZ has more power to
discriminate between both groups of toxicants than rZF. This means that
one can a priori classify a toxicant in group 0 or 1, based on the rPZ value
of that toxicant. Since the rPZ value is simply log (EC10,phytoplankton)−
log (EC10,zooplankton), two single-species toxicity test results are
sufficient to classify a toxicant in group 0 or group 1.

In contrast, rPZ and rZF have no power at all to discriminate
between group 2 (i.e. for which br ¼ ri;eco) and group 3 toxicants (i.e.
for whichbr N ri;eco), as reflected by partial Lambda values of 0.99 (≈1)
for both rPZ and rZF and Fig. 2B.

3.4. For which toxicants is T1 valid? Classification tree approach

In Fig. 3 the resulting classification tree predicting if bl N ceco;i (coded
class “1”) or if bl N ceco;i (coded class “0”) based on rPZ and rZF is shown.
The tree consists of split conditions (ellipses) and end nodes (boxes). One
has to start at the top of the tree and let the split conditions decide which
way to proceed. If a split condition is fulfilled, this results in a
continuation via the left branch. The tree is followed until an end node is
reached. This end node gives the resulting classification (underlined). For
example, the dashed line indicates the pathway for a toxicant for which
rPZ=2. Since the first split condition (rPZ≤−0.9385) is not fulfilled
(rPZ=2), one has to continue to the left branch of the tree. As such, a

second split condition is reached (rPZ≤−0.3861), which is also not
fulfilled in this example. As a result, a toxicant with rPZ=2 is classified as
class “0”, i.e. bl ¼ ceco;i for that toxicant. In a similar way, a toxicant for
which rPZ=−2 and rZF=0 will be classified as class “1”, i.e.bl p ceco;i for
that toxicant, as indicated by the dotted line in Fig. 3.

The number of training-set toxicants which were correctly and
erroneously classified using these split conditions is also given in these
end nodes. For example, in the box situated in the left side of the tree,
35 toxicants were classified correctly (i.e. in class 1), while 2 were
classified erroneously. Toxicants classified in end nodes marked with
an asterisk, have a probability of ≥90% of being classified correctly.

The importance of rPZ in distinguishing group 0 from group 1
toxicants, as suggested by the discriminant analysis, is confirmed by
this classification tree, where rPZ determines the first split, and hence
has the most influence on the resulting classification of a toxicant.

The subsequent cross validation of this classification tree indicates
that the tree also has some predictive power for the test-set toxicants.
Within the test-set, 63% of the group 1 toxicants were classified
correctly by the tree. Also, 93% of the group 0 toxicants within the test-
set were classified correctly by the tree. Note that these test-set
toxicants were not used in the construction of the classification tree.

Van den Brink et al. (2006) found that the HC50s of chronic
invertebrate-SSDs for herbicides are on average two orders of magnitude
higher than those of chronic phytoplankton-SSDs for herbicides, i.e. that

Fig. 2. A: Scatterplot of the 1000 considered toxicants based on their rPZ and rZF value. A black symbol indicates that bl i N leco;i for that toxicant. A grey symbol
indicates that bl i ¼ leco;i for that toxicant. A dashed line indicates rPZ=0. B: Scatterplot of the 1000 considered toxicants as a function of their rPZ and rZF value. A
black symbol indicates that br i N reco;i for that toxicant. A grey symbol indicates that br i ¼ reco;i for that toxicant. A dashed line indicates rPZ=0.
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rPZ=−2 for many herbicides. In the same study, the difference between
invertebrate and fish-HC50s was found to be b1 order of magnitude, i.e.
corresponding to rZF≈0. Hence, it can be safely hypothesised that
toxicants primarily targeting phytoplankton have rPZ=−2 (EC10s of
zooplankton are two orders of magnitude higher than those of
phytoplankton), and rZF=0 (EC10s of zooplankton and fish are equal).
From the classification tree, it becomes apparent that those toxicants may
have bli N leco;i as indicated by the dotted line in Fig. 3. Thus, for these
toxicants, T1 is not valid: when accounting for ecological interactions, the
mean ecosystem sensitivity for herbicides (μeco,i) is predicted to be
different from the mean ecosystem sensitivity when ecological interac-
tions are not accounted for (bli). Hence, the applications of the cSSD
approach for herbicides may lead to inaccuracies caused by differences in
parameters between cSSD and eco-SSD. Conversely, toxicants primarily
targeting zooplankton and fish (e.g. rPZ=2 and rZF=0), havebli ¼ leco;i,
as indicated by the dashed line in Fig. 3. This suggests that the mean of
eco-SSD and cSSD is comparable for these toxicants. An explanation for
the different results obtained for both toxicant types may be found in the
number of populations experiencing food web-mediated indirect effects.

Toxicants primarily targeting phytoplankton, can give rise to a reduction
of zooplankton resulting from a decrease in available phytoplankton
biomass. A reduction in fish biomass can be observed as a second-order
indirect effect. Because a cSSD approachwould categorize the phytoplank-
ton as the trophic level being mostly affected by the toxicant, it ignores
possible (indirect) effects on two trophic levels. Conversely, in case of
toxicants targeting zooplankton and fish, a cSSDapproach categorizes both
zooplankton and fish as being affected, thereby only ignoring possible
(indirect) effects on one trophic level, i.e. on phytoplankton. These con-
siderations seem to justify earlier suggestions to only incorporate organ-
isms from sensitive trophic levels in the cSSD (e.g. Posthuma et al., 2002).
However, while these earlier suggestions have mainly been based on
statistical considerations (i.e. the violation of the assumption of (log)
normality of SSDs that include both sensitive and insensitive species), our
present simulation study seems to justify these suggestions from an
ecological point of view. Indeed, incorporating species in an SSDwhich are
not directly targeted by the toxicant (e.g. zooplankton in the case of
herbicides), reflects the erroneous idea that those species are also not
affected in an ecosystem context. Consequently, the mean of such a cSSD

Fig. 3. Classification tree predicting if bl i N leco;i (coded class “1”) or if bl i ¼ leco;i (coded class “0”) based on rPZ and rZF. If a split condition (ellips) is fulfilled, this
results in a continuation to the left branch. The tree is followed until an end node is reached (box). This end node gives the resulting classification (underlined). The
number of training-set toxicants which were correctly and erroneously classified using these split conditions is also given in these end nodes. Toxicants classified in
end nodes marked with an asterisk, have a probability of≥90% of being classified correctly. The dashed line indicates the pathway for a toxicant for which rPZ=2. The
dotted line indicates the pathway for a toxicant for which rPZ=−2 and rZF=0.

Fig. 4. Visualisation of possible differences between parameters of cSSD (bold line) and eco-SSD (dashed line): A: bl i N leco;i; B: br i N reco;i; C: bl i N leco;iKbr i N reco;i.

395F. De Laender et al. / Environment International 34 (2008) 390–396



Author's personal copy

will be higher than a cSSD only consisting of sensitive species. Schmitt-
Jansen and Altenburger (2005) have shown that the mean of a cSSD for a
herbicide containing only phytoplankton species (i.e. sensitive for the
herbicide) agreed well with the mean sensitivity of those species within an
ecosystem.

A similar classification tree approach for σ did not result in any
classifying nor predictive power, because of the limited fraction of toxi-
cants in group 3. The difference between standard deviations of cSSD and
eco-SSD does not necessarily make the eco-SSD more conservative than
the cSSD. The lower percentiles of the cSSD will still be lower than the
lower percentiles of the eco-SSD (Fig. 4B). In contrast, the opposite may
hold when the mean of the eco-SSD is lower than the mean of the cSSD
(Fig. 4A). However, this will depend on the chosen percentile of a cSSD
(i.e. what “y” is in “HCy”) to derive a PNEC.When bothmean and standard
deviation are lower for cSSD than for eco-SSD (Fig. 4C), it is difficult to a
priori predict which of both approaches (cSSD or eco-SSD) will result in
the lowest ‘safe concentration’. Yet, the different locations of cSSD and
eco-SSD, as indicated by the difference between bli and μi,eco should
primarily be regarded as an indication of the violation of T1 for a sub-
stantial amount (25%) of toxicants. The possible implications of this
violation for water quality standards give valuable insights. However,
underlying assumptions of the cSSD approach are many (Forbes and
Calow, 2002). Thus the way in which these assumptions influence water
quality standard derivation will depend on the validity of all of these
assumptions, and not only on the validity of the assumption examined here.
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