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ABSTRACT: Several methods to detect faults have been
developed in various fields, mainly in chemical and process
engineering. However, minimal practical guidelines exist for
their selection and application. This work presents an index
that allows for evaluating monitoring and diagnosis perfor-
mance of fault detection methods, which takes into account
several characteristics, such as false alarms, false acceptance,
and undesirable switching from correct detection to non-
detection during a fault event. The usefulness of the index to
process engineering is demonstrated first by application to a
simple example. Then, it is used to compare five univariate
fault detection methods (Shewhart, EWMA, and residuals of
EWMA) applied to the simulated results of the Benchmark
Simulation Model No. 1 long-term (BSM1_LT). The
BSM1_LT, provided by the IWA Task Group on Bench-
marking of Control Strategies, is a simulation platform that
allows for creating sensor and actuator faults and process
disturbances in a wastewater treatment plant. The results
from the method comparison using BSM1_LT show better
performance to detect a sensor measurement shift for adap-
tive methods (residuals of EWMA) and when monitoring
the actuator signals in a control loop (e.g., airflow). Overall,
the proposed index is able to screen fault detection methods.
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Introduction

The use of on-line sensors in control and automation for
optimized operation of wastewater treatment plants
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(WWTPs) is increasingly popular. As a result, large
quantities of data are provided, which makes manual
expert-based quality evaluation of these data impossible.
Therefore, the development of methods that allow for
automatic detection of faults (process monitoring) and
identifying their root cause (fault diagnosis) are urgently
needed. Suchmethods could be used to improve data quality
and to account for the effects of faults in active controllers
and overall plant performance (fault-tolerant control).

Fault detection is not a new topic in research. Today, a
plethora of methods is available and widespread in different
engineering areas (Venkatasubramanian et al., 2003a,b,c). In
the wastewater treatment discipline process, history-based
methods have been investigated most frequently. For
instance, applied statistical process control (SPC) methods
range from univariate methods like control charts (Schraa
et al., 2006) to multivariate methods, for example, based
on principal component analysis (PCA) (Lee and
Vanrolleghem, 2003; Rosen and Lennox, 2001; Villez
et al., 2008; Yoo et al., 2006). These methods work
reasonably well with synthetic data sets but they have
difficulties in handling real-life dynamics (e.g., seasonal
changes) and non-linearities (e.g., temperature-dependent
kinetics). For this reason, adaptive methods, in which some
parameters can change over time, have been proposed to
account for changing process behavior (Aguado and Rosen,
2008; Aguado et al., 2007; Lee et al., 2005; Lennox and
Rosen, 2002). Expert knowledge-based methods have also
been used for fault detection, for example, in Genovesi et al.
(1999), fuzzy logic is used for monitoring anaerobic
digestion.

Still, many other methods remain untested and only
minimal practical guidelines exist for their selection
and application. In order to objectively compare fault
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detection methods, a simulation platform, the Benchmark
Simulation Model No. 1 long-term (BSM1_LT), has been
developed (Rosen et al., 2004) based on the work of the
International Water Association (IWA) Task Group on
Benchmarking of Control Strategies (BSM, 2009). Among
other features, the BSM1_LT includes models that describe
typical faults inWWTPs. One task that remains unaddressed
within the BSM1_LT platform is the development of
applicable criteria for objective comparison of fault
detection algorithms.

Therefore, the goal of this article is to present a single
index for evaluating fault detection performance that allows
for screening different methods. The usefulness of this index
to process engineering is illustrated first by application to a
simple example and then it is applied to the BSM1_LT
platform to evaluate the performance of different fault
detection methods found in the literature. This example is
made extra challenging for the detection methods and the
performance index by introducing a gradual process change
that is induced by a temperature profile over 1 year.
Materials and Methods

Fault Detection Evaluation Index

An objective index is proposed to evaluate the monitoring
and diagnosis performance of different fault detection
methods. This index assigns penalization points each time
the fault detection method fails. The fault detection method
evaluates at every sample whether a fault in a sensor or
actuator is occurring or not. The output of the method is the
estimated state of the sensor or actuator which is compared
to the true state to determine if the output of the fault
detection method is correct or not. When it is not correct,
the fault detection method gets penalization points, so the
worse the method performs the more points it gets. The
index is designed in such a way that:
� F
33
alse acceptance (FAC) is penalized by using a penalty
function that is evaluated at each time instant. The later
a fault event is detected the more penalization points
are assigned to the fault detection method, so the
proposed penalization approach is dynamic and
considers the speed in fault detection.
� I
ntermittent detection of a fault within the duration of a
fault event is extra penalized. This fact has been
considered since undesirable switching from correct
detection to non-detection can lead to a loss in trust on
the fault detection system by the human operators.
� A
 constant penalization value is assigned to each false
alarm (FAL).

The instantaneous penalties are summed over time to
obtain the accumulated penalties. By taking into account
that later detections are worse than earlier detections and by
accounting for a loss in trust of human operators that could
4 Biotechnology and Bioengineering, Vol. 108, No. 2, February, 2011
be caused by intermittent detections, the outcome of the
evaluation index is a measure of reliability which ranges
from 0% (not reliable) to 100% (reliable).

The details on how the fault detection index works are
explained through Figure 1. This figure describes the
evaluation of a hypothetical fault detection system to
identify normal (state 1) and faulty (state 2) operation of a
sensor along 1 day. As can be seen in this figure, the sensor
fails from 0.5 to 0.8 days (true status—x—in Fig. 1a) and
the hypothetical fault detection system provides an
estimation of the sensor state (estimated status— x̂—in
Fig. 1a) that is not correct all the time: the fault detection
system indicates a false alarm (FAL) between 0.2 and 0.3
days and a false acceptance (FAC) between 0.5 and 0.6 days.
To evaluate the fault detection performance different steps
are followed:

Definition of a timer (k): An artificial timer is initialized at
the beginning of a fault event (k(1)¼ 1). The timer is
switched On (k(t)¼ k(t� 1)þ 1) when a fault event starts
(0.5 days in this example) and is switched Off (k(t)¼ 1) at
the end of the event as can be seen in Figure 1b. As
mentioned before, methods that switch back from a positive
detection to non-detection (intermittent detection) are
penalized extra (intermittent detection is illustrated in
Fig. 2). To do so the time from the start of the fault, k(t) is
artificially increased with a positive constant kswitch
whenever the alarm switches from correct detection to false
acceptance (i.e., k(t) becomes k(t)þ kswitch).

Calculation of the penalty function (P(t)): Figure 1c shows
the penalty function for false acceptance (PFAC), which is
calculated from Equation (1) using the artificial timer values
from Figure 1b. The penalty function is exponentially
increasing and reaches the maximal penalty level (PFAC,sat)
after a given time (tFAC) which reflects the urgency of
penalizing for late detection (in this example
tFAC¼ 45min). The penalty function for false alarms
(PFAL) is computed by using Equation (2) (Fig. 1d).

Calculation of penalization points (G): The penalties
assigned to the evaluated fault detection system are obtained
as follows. First, the difference between the true state (x(t))
and the estimated state ðx̂ðtÞÞ (Eq. 3, Fig. 1e) is computed,
obtaining 0 if they coincide and 1 if they are different. Then,
this sequence of 0 and 1s is multiplied with the penalty
functions (PFAC(t) and PFAL(t)). The area under the
function shown in Figure 1f corresponding to the FAC
(Eq. 4) and FAL (Eq. 5) situations are the accumulated
penalties (GFAC and GFAL). Equation (6) gives the total
penalization.

Calculation of maximum penalty: The total maximum
penalty (G) and the maximum penalties for FAC and FAL
(GFAC,max and GFAL,max, respectively; see Fig. 1c and d) are
obtained by setting d(t) to 1 for all time instants (see Eqs. 7–
9). The sum of PFAC and PFAL penalty functions represents
the reference case that results from maximum penalization
at all times.

Measure of reliability (J): J represents how reliable the
system is to detect faults and it is determined by subtracting



Figure 1. Representation of the fault detection index concept. (a) Sensor state, (b) artificial timer, (c) penalty function FAC, (d) penalty function FAL, (d) difference function

(d(t) in Eq. 3), and (e) points (G in Eq. 6).
the accumulated penalty divided by the maximal accumu-
lated penalty from one and multiplying by 100 (Eq. 10). The
closer to 100 the more reliable the fault detection system is
judged to be. More information can be extracted from JFAC
and JFAL, which indicate the reliability of the system against
generation of false acceptance and false alarms, indepen-
dently (Eqs. 11 and 12).

PFACðtÞ ¼ PFAC;0

þ ðPFAC;sat�PFAC;0Þ 1�eð�kðtÞ=tFACÞ
� �

(1)
PFALðtÞ ¼ PFAL;0 (2)

dðtÞ ¼ max 0; abs xðtÞ�x̂ðtÞð Þ½ � (3)

GFAC ¼
Xtend
t0

PFACðtÞ dðtÞ½ � (4)

GFAL ¼
Xtend
t0

PFALðtÞ dðtÞ½ � (5)
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Figure 2. System and diagnosed sensor states for six artificial methods (1 is normal operation and 2 is faulty operation).
G ¼ GFACðtÞ þ FFALðtÞ (6)

GFAC;max ¼
Xtend
t0

PFACðtÞ½ � (7)

GFAL;max ¼
Xtend
t0

PFALðtÞ½ � (8)

Gmax ¼ GFAC;max þ GFAL;max (9)

J ¼ 1� GFAC þ GFAL

GFAC;max þ GFAL;max

� �
� 100 (10)

JFAC ¼ 1� GFAC

GFAC;max

� �
� 100 (11)

JFAL ¼ 1� GFAL

GFAL;max

� �
� 100 (12)

In summary, the inputs to the fault detection evaluation
index are the true x(t) and the estimated x̂ðtÞ sensor/
actuator states provided by the fault detection system that
is being evaluated and the outputs are expressed as a
measure of reliability of the fault detection system (J). Five
336 Biotechnology and Bioengineering, Vol. 108, No. 2, February, 2011
parameters need to be specified for the index: PFAC,0,
PFAC,sat, tFAC, PFAL,0, and kswitch. The base level of
penalization which is time independent is indicated by
PFAC,0 and PFAL,0. PFAC,sat is used to indicate the maximal
penalty level and tFAC reflects the urgency of penalizing
for late detection (in the example of Fig. 1 tFAC¼ 45min).
At this stage, it is suggested to use a trial and error
approach to tune these performance evaluation para-
meters. However, the selection of the parameters should
reflect the benefits and costs associated with the
implementation of a fault detection system. Although in
the given example only two types of sensor states are
considered (normal and faulty), it is possible to extend this
index to different types of faults by defining Equations (1)
and (2) for each type of fault.
Illustrative Simple Example

The validity of the global index is checked against a simple
illustrative example that covers six types of detection:
- P
erfect detection (100% correct).

- C
ompletely wrong detection (100% wrong).

- E
qual to perfect detection but including a false alarm event

(false alarm).

- E
qual to perfect detection but with delayed detection of

the fault (delayed detection).



- E
qual to perfect detection but including a switch back
detection (intermittent detection).
- E
qual to delayed detection but including inertia (delayed
detection with inertia).

Figure 2 presents the true (x) and the estimated ðx̂Þ sensor
states for the six examples of detection.
BSM1_LT System

The simulation platform used is the BSM1_LT (Rosen et al.,
2004). This platform includes model, process configuration
(pre-denitrification plant with five activated sludge units in
series, two anoxic—ASU1 and ASU2—and three aerobic—
ASU3 to ASU5), control systems, benchmarking procedures,
and evaluation criteria (for process and controller perfor-
mance). It comprises a 1-year evaluation period with a
dynamic influent and includes temperature-dependent
kinetics. Given the focus on sensors and actuators, realistic
models for both sensors and actuators are included (Rieger
et al., 2003, 2006), as well as descriptions for sensor and
actuator faults (Rosen et al., 2008a). Models for inhibition
and toxicity (Rosen et al., 2008b) are also included in the
platform. Thus, emulating often-encountered problems in
real WWTP data, fault detection methods can be bench-
marked within a realistic environment. The main motiva-
tion of using this platform is that these methods cannot be
tested with real data because it is unfeasible to know the true
value of a sensor over the long term.
Sensor Model Parameters

The NO3-N measurement in the second anoxic compart-
ment is of class B0, which includes a response time of 10min
(see Rieger et al., 2003) with a measurement range of 0–
20 gNm�3. The measurement noise standard deviation is
equal to 0.5 gNm�3. For the dissolved oxygen sensors in the
ASU4 and ASU5 aerated compartments, the probes are
assumed to be of class A, which includes a response time of
1min, with a measurement range of 0–10 gO2m

�3 and a
measurement noise standard deviation of 0.25 gO2m

�3.
Control System

The primary control objectives for the default control strategies
in the BSM1_LT platform are to maintain (1) the NO3-N
concentration in the ASU2 (anoxic) at a predetermined set
point value (1 gNm�3) and (2) the dissolved oxygen
concentration in the ASU5 (aerobic) at a predetermined set
point value (2 gO2m

�3). The manipulated variables are the
internal recycle flow rate from the last aerated compartment
back to the first compartment and the oxygen transfer
coefficient in the ASU5, KLa_ASU5 (which is the model
equivalent to the airflow). An external carbon source
(400,000 gCODm�3) is added to the first reactor at a fixed
rate Qcarb of 2.0m

3day�1. In BSM1_LT, two different wastage
flow rates are imposed depending on the time of the year in
order to keep more biomass in the system during the winter
period: 300m3day�1 from October 30 to April 30 (days 0–182
of the dynamic simulation) and from October 29 to April 29
(days 364–546). For the rest of the simulation time, the wastage
flow rate is 400m3day�1.
Faults Modeling

The illustrative example given here focuses on sensor faults and
not on process faults (inhibition and toxicity kinetics of
BSM1_LT are switched off in this study). The sensor models
fromRieger et al. (2003) were extended to include seven sensor
states, reflecting different sensor faults, as defined in Rosen
et al. (2008a): (1) fully functional, (2) shift, (3) drift, (4) fixed
value, (5) complete failure, (6) wrong gain, and (7) calibration.
The occurrence of the faults is modeled by means of a Markov
chain process (Rosen et al., 2008a). This model is run
separately for each sensor and the outcomes are stored in files
that are used as inputs for the simulations (Fig. 3 top presents
the sequence of faults used for the DO sensors). For this study,
the sensors used belong to the class ‘‘bad,’’ which means that
on average, a failure occurs every 2 weeks. In the case of the DO
sensor it was fully functional for 74% of the total time (state 1),
while for the remainder of time (26%) it suffered from shift
problems (state 2). The other sensor faults were switched off
in this study.

The implementation of the phenomenological fault
descriptions was largely based on the approach described
in Rosen et al. (2008a,b). Fault vectors with five elements
(v1, v2, v3, v4, and v5) were created for the different types of
faults (Table I). These elements sum or multiply to the true
value in different places of the sensor model as shown in
Figure 4 for the class A sensor of Rieger et al. (2003). Default
parameters used in the BSM1_LT for the DO sensors are:
fb¼ 2.0, fg¼ 2.0 (doubling of the slope of calibration curve),
fr¼ 0.25 (7 days)�1 (drift speed), and c0 (the calibration
point)¼ 2mg L�1 for the DO sensor. The input and output
from the DO sensor model (ASU4) are plotted in Figure 3
(bottom).
Simulation Protocol

The simulation protocol for BSM1_LT is as follows: First,
the model is run to steady state for 200 days using a constant
influent, without any faults. Afterwards, dynamic simula-
tion is conducted using dynamic influent data (flows,
concentrations, and temperature) for a period of 609 days at
15min interval and with sensor and fault models active (the
input file contains for each sensor the sequences of states,
from 1 to 2, that were obtained from the Markov chains
models). The first 245 days of dynamic simulation are used
for training the fault detection methods and the following
364 days (245–609 days) are used to evaluate the
performance of the methods. Simulations are conducted
with WEST1 (MOSTforWATER NV, Kortrijk, Belgium)
and output data are stored every 15min.
Corominas et al.: Fault Detection Performance in WWTPs 337
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Figure 3. DO sensor states (top), true (gray) and measured (black) DO during the evaluation period (scenario 1) (bottom).
The outputs of the sensor models obtained during the
dynamic simulation are fed to the fault detection methods
implemented in Matlab1 (Mathworks, Inc.) that generate
the estimated sensor states ðx̂Þ. The fault detection index is
computed for each evaluated method by introducing the
true states (x) imposed by the input file together with the
estimated states ðx̂Þ obtained by the fault detection methods.
Simulated Fault Scenarios

The system is simulated for six scenarios with different
combinations of faulty instruments and monitored variables
(in cases 3 and 6 the fault is on the DO ASU5 sensor but the
data used for monitoring is the KLa—i.e., airflow—instead
of the direct DO measurement) and with different
temperature profiles (see Table II). The fault sequences
applied to the DO sensors in ASU4 and ASU5 are the same.
The DO sensor in ASU5 is involved in a feed-back control
loop. The fact that the DO sensor in ASU4 is not used for
Table I. Vectors used to describe faults phenomenology (adapted from

Rosen et al., 2008a).

Sensor status

Fault vector

[v1 v2 v3 v4 v5]

1. Fully functional [1 0 0 1 0]

2. Shift [1 fb 0 1 0]

3. Excessive drift [1 �(t� t0)�fr 0 1 0]

4. Fixed value [0 0 0 0 1]

5. Complete failure [0 0 0 1 0]

6. Wrong gain [fg 0 (1� fg)�c0 1 0]

7. Calibration [0 0 0 0 1]

338 Biotechnology and Bioengineering, Vol. 108, No. 2, February, 2011
control allows for comparing performance of fault detection
methods applied to controlled and non-controlled variables.
Fault Detection Methods

Several univariate control charts were tested and compared
in this study. In order to ensure objective comparison the
methods were calibrated and tuned with the same ‘‘fault-
free’’ data set. All methods were implemented as defined in
Montgomery (2009).

A control chart is a graphical display of a quality statistic
that is computed from a univariate time series. A center line
represents the average value (or no error for residual plots)
and boundaries are set to the quality statistic (usually both
an upper control limit—UCL and a lower control limit—
LCL). Five methods were tested in this study:
� T
he Shewhart control chart.

� T
he exponentially weighted moving average (EWMA)

control chart.

� T
hree variations on the Shewhart control chart on the

residuals of EWMA (resEWMA):
- resEWMA: Standard method as defined in Montgom-

ery (2009).
- resEWMA�: The EWMA filter is not updated if the

quality statistic is out-of-control.
- resEWMA�T: Same as resEWMA� but including

temperature dependency for UCL and LCL
(UCLT¼ f�UCL, f being an exponential function
with f¼ 1 at 208C and f¼ 0.8 at 108C). The function
was obtained using Hermite curve interpolation



Figure 4. A sensor model including faults (class A).

Table II. Simulation scenarios.

Scenario Faulty instruments Monitored variable Temperature Manipulated variable

1 (DO_ASU4) DO ASU4 DO ASU4 Dynamic —

2 (DO_ASU5) DO ASU5 DO ASU5 Dynamic KLa ASU5

3 (KLa_ASU5) DO ASU5 KLa ASU5 Dynamic KLa ASU5

4 (DO_ASU4_T) DO ASU4 DO ASU4 Constant (158C) —

5 (DO_ASU5_T) DO ASU5 DO ASU5 Constant (158C) KLa ASU5

6 (KLa_ASU5_T) DO ASU5 KLa ASU5 Constant (158C) KLa ASU5

Ta

G

Gm

GF

GF

GF

GF

J

JFA
JFA
(Spiegel and Liu, 1999) and the f values were
obtained by trial and error.
ble

ax

AC

AC

AL

AL

C

L

Results

Illustrative Simple Example

Table III presents the results of the proposed indices for the
six simulated cases depicted in Figure 2. PFAC,0, PFAC,sat, and
tFAC values for false acceptance were 20, 50, and 3 samples
(45min), respectively, and kswitch was equal to 1. PFAL,0 for
false alarms was set to 20.

The evaluation system is set up that a perfect detection case
receives 0 penalization points (G) and the completely wrong
detection case receives the maximum penalty Gmax.
Accordingly, the perfect detection case gives 100% reliability
III. Index results for the artificial case study to verify the point awardi

Unit 100% correct 100% wrong False alarm D

Points 0 2,804 200

Points 2,804 2,804 2,804

Points 0 1,424 0

,max Points 1,424 1,424 1,424

Points 0 1,380 200

,max Points 1,380 1,380 1,380

% 100 0 93

% 100 0 100

% 100 0 86
(J) and completely wrong detection 0% reliability (J). If the
decision of the fault detection system results in false alarm,
delayed detection, delayed with inertia, or intermittent
detection, there is an increase in the penalization points
compared to the perfect detection case. This results in a
reduction in reliability of 7%, 14%, 21%, and 11%,
respectively. When only evaluating the reliability of the
system against false acceptance (JFAC), the perfect detection
and the false alarm cases are 100% reliable because they are
capable to identify the faulty event (from 0.5 to 0.8 days).
The cases completely wrong, delayed detection (with and
without inertia), and intermittent detection are 0%, 70%, and
79% reliable against false acceptance because the corre-
sponding fault detection systems do not identify the faulty
event properly. When focusing on false alarms, just the cases
completely wrong and false alarm get penalization points
(GFAL of 1,380 and 200 points, respectively), obtaining a 0%
ng system.

elayed detection Delayed detection inertia Intermittent detection

427 627 297

2,804 2,804 2,804

427 427 297

1,424 1,424 1,424

0 0 0

1,380 1,380 1,380

85 78 89

70 70 79

100 100 100
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and 86% reliability against false alarms (JFAL). In the rest
of the cases, no false alarms are generated and therefore
these fault detection systems are 100% reliable against false
alarms.

From the described results, it can be concluded that the
developed penalty function evaluates several desirable
aspects of a good fault detection system. Indeed, the penalty
function is indicative of the detection performance in terms
of false alarms, false acceptances, and intermittent detection.
As indicated, this penalty function can be decomposed into
penalties for false alarms and false acceptances.
Benchmark Case Study

The BSM1_LT is used to evaluate the performance of the
univariate fault detection methods described above to detect
Figure 5. Control charts for scenario 2 (left) and scenario 3 (right). a: DO, (b) resEWM
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shift faults in the DO probes in ASU4 and ASU5. The
selection of the monitored variable (DO or KLa as a means
for airflow) and the effect of temperature on the fault
detection performance are evaluated.
Control Charts: Qualitative Evaluation

For all fault detection methods, the theoretical confidence
interval corresponding to a¼ 0.0063% (which is the very
conservative 4-s two-sided confidence interval for normally
distributed data) was used. A value of 0.01 for l (forgetting
factor) is selected (high l corresponds to short-term
memory) for the EWMA-related methods.

An example of a control chart (resEWMA� for scenario 2,
monitoring DO) is presented in Figure 5 left. It can be
seen in Figure 5a that the DO signal oscillates around the DO
A�, (c) sensor states, (d) temperature, (e) KLa ASU5, (f) resEWMA�, and (g) resEWMA�T.



set-point of 2mg L�1 with less variability during the winter
period (see temperature profile in Fig. 5d) because the
controller is well tuned for the winter period, with slower
process dynamics. The shift faults provoke sudden changes
in the signal at the beginning and at the end of the faulty
events. In Figure 5b, the residuals of the EWMA are given
with the upper and lower control limits (UCL and LCL,
respectively), and in Figure 5c, the state of the sensor is
presented (1 for functional and 2 for shift fault). This
method detects the shift faults after a long delay (see in
Fig. 5b that the residuals of EWMA are out of the UCL and
LCL at the very end of the faulty events, Fig. 5c). The control
charts for resEWMA� and resEWMA�T for scenario 3
(monitoring KLa) are shown in Figure 5 right. The imposed
shifts are reflected with sharp decreases in the KLa signal,
because the controller compensates for the shift (Fig. 5e).
The KLa variations are bigger during the summer period.
The resEWMA� and resEWMA�T methods are able to detect
the shift faults because the residuals are outside the UCL and
LCL for almost all fault events (Fig. 5f). Adjusting the UCL
and LCL with temperature, improves the fault detection
during the winter period (Fig. 5g). From the visual
inspection of the control charts in Figure 5, it is clear that
monitoring KLa gives better detection results than monitor-
ing the DO signal.
Figure 6. Penalization points for the resEWMA�method applied to scenario 3. a: Diffe
Penalization System

The penalization system was used to evaluate the
performance of the monitoring methods. The values for
PFAC,0, PFAL,0, PFAC,sat, and kswitch were the same ones used in
the illustrative simple example. Here, the value for tFAC was
288 samples (3 days). The penalization system utilization is
presented in Figure 6 (resEWMA� control chart for the
scenario 3). At the top, the difference function is presented,
which indicates the deviations between the true (x) and the
estimated ðx̂Þ sensor states. In the middle, the penalty
function (sum of Eqs. 1 and 2) describes the assignment of
penalization points for false alarms and false acceptance. A
more or less constant line at 20 points is observed that
corresponds to the false alarm generation. Also, several
sequences are observed for false acceptance in which the
penalty smoothly varies from 20 to saturation (at 50 points).
At the bottom, the actual points that the resEWMA�method
obtained for Scenario 3 are presented. As seen in Figure 6 the
method cannot detect the shift fault event from 490 to 500
days, and therefore, penalization points are received. The
method can better detect the other faults and therefore few
penalization points are accumulated. Two periods of false
alarms can be identified, time from 280 to 340 days and from
580 to 610 days.
rence ðx�x̂Þ (Eq. 3). b: Penalty function. c: Penalty for the method. Multiply (a) with (b).

Corominas et al.: Fault Detection Performance in WWTPs 341

Biotechnology and Bioengineering



Comparison of Methods and Scenarios by Using the Fault
Detection Index

Figure 7 presents the results of the proposed index for
the evaluated methods applied to the defined scenarios. The
results for the scenarios 1–3 (varying temperature) are
shown on the left. The J, JFAL, and JFAC indicate the reliability
of the fault detection system. In this case, J (Fig. 7, top left)
shows that the methods are between 40% and 100% reliable
to detect the imposed shift. The worst result (40%
reliability) corresponds to the scenario 1 when monitoring
DO that is not involved in a control loop and the 100%
reliability is obtained for scenario 3 when monitoring KLa
with DO involved in the control loop. Looking only at JFAL
(Fig. 7, middle left) all methods (except for EWMA) are
between 90% and 100% reliable against false alarms in the
different scenarios. Regarding false acceptance (JFAC), only
the methods EWMA, resEWMA�, and resEWMA�T are
more than 80% reliable. However, in the case of EWMA
(scenarios 1 and 3) high reliability against false acceptance
(JFAC around 100%) is achieved at the expense of low
Figure 7. Evaluation of different monitoring methods (Shewhart, EWMA and three type

controlled DO and kLa at constant and dynamic temperature) using the proposed fault

temperature on the right—d,e,f). a: J (global performance). b: JFAL (false alarms performa

alarms performance). f: JFAC (false acceptance performance).
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reliability against false alarms (JFAL around 20%, indicates
that the system generates lots of false alarms). Overall,
better performance is obtained when monitoring KLa
(KLa_ASU5), than when monitoring the controlled DO
(DO_ASU5) and finally when monitoring non-controlled
DO (DO_ASU4).
Effect of Temperature Dynamics on the
Monitoring Performance

The results for scenarios 4–6 (constant temperature at 158C)
are presented in Figure 7 right. It can be seen that the
reliability of the methods both in terms of false acceptance
(JFAC) and false alarms (JFAL) increases at constant
temperature. Regarding the resEWMA�T it is possible to
obtain very similar performance for the KLa_ASU5 during
dynamic temperature (Fig. 7, left) compared to the same
case for constant temperature (Fig. 7, right), thus showing
the benefits of including temperature to adapt the control
limits (Fig. 5g).
s of residuals on EWMA) applied to different scenarios (monitoring non-controlled DO,

detection evaluation index (dynamic temperature on the left—a,b,c and constant

nce). c: JFAC (false acceptance performance). d: J (global performance). e: JFAL (false



Discussion

Fault Detection Methods

A good fault detection method should be accurate (correct-
ness in classification) and fast in detecting the faults (speed).
Moderate performance was observed for all methods tested in
this study to detect shift faults, except for the resEWMA�

method when monitoring KLa controlled by the faulty DO
sensor. Better detection methods should be found that can
cope with the real-life aspects of the BSM1_LT platform, such
as time-varying and non-linear process behavior (e.g., effects
of temperature). Future research should be aimed at the
evaluation of methods that account for such characteristics
and to evaluate other types of faults.

The poor performance of the resEWMAmethod has been
tackled by means of two adjustments. First, in the
resEWMA� method the EWMA filter is not updated if
the quality statistic is out-of-control, which decreases the
false acceptance rate of themethod. Second, the resEWMA�T

increases the performance since more faults are detected
when the limits are adjusted to temperature variation. It is
worth noting that aeration-related variables (DO and KLa)
present smaller variations in winter periods because of the
lower dynamics at lower temperatures. Different control
limits for winter and summer periods thus increase the
overall performance of the method.

From the results obtained in this study, it is apparent that
the choice of the monitored variable affects the performance
of the fault detection methods. The action of the controller
masks the effect of some faults (e.g., shift) in the sensor
signal and therefore monitoring the actuator variable (KLa
in this case) improves the fault detection performance
(KLa_ASU5).

Further work will be conducted to evaluate other fault
detection methods. For instance, multivariate methods
(PCA methods) will be investigated. Moreover, already
existing methods will be included in the analysis such as
the method presented in Aguado and Rosen (2008), where
adaptive andmultivariate features are combined. Overall, an
effort has to be made to develop methods for the wastewater
treatment field that can account for daily, weekly, and
seasonal patterns in the data and that are able to use
redundant information.
Benchmark Platform

The BSM1_LT platform allows for testing the fault detection
algorithms under standardized, realistic environmental con-
ditions. The simulated measurements are sufficiently realistic
to allow for adequate testing of monitoring methods before
bringing them into practice. Although this study focused on
sensor faults the BSM1_LT platform can also be used tomodel
actuator and process faults (e.g., inhibition and toxicity
detection) and therefore allows for testing of various fault
detection methods for sensors, actuators, and process faults.
The proposed fault detection evaluation index is an
important contribution to process engineering. However,
further investigation on the parameter values of the index is
needed (PFAC,0, PFAL,0, PFAC,sat, tFAC, and kswitch). These
parameters can highlight different aspects of fault detection
performance, such as false acceptance, false alarms, and
speed of detection. It is to be expected that the relative
performance of monitoring methods is sensitive to the
choice of the values of these parameters of the index. For
practical relevance, the selection of parameters per type of
fault should reflect the benefits and costs associated with
implementing fault detection strategies.

As a last note, onemay consider that in practice an alarm in
an on-line application eventually leads to a control action
aimed at compensating the problem, either by operator-based
or automatic adjustment of plant operation (i.e., fault-
tolerant control). In both cases, the monitoring system is
expected to lead to more robust plant performance.
Economic evaluation of the resulting closed loop plant
performance may then be easier andmore relevant to practice
than the evaluation of the monitoring system on its own.
Conclusions

A first case study using BSM1_LT for evaluating monitoring
performance in wastewater treatment systems (focusing on
sensor faults) has been presented. A practical index for
monitoring performance has been developed as a combined
effort of the IWA Task Group on Benchmarking Control
Strategies and experts on monitoring methods. The results
obtained have proven that the proposed index is a valid tool
to screen fault detection methods and to pinpoint their
limitations.

The results from the method comparison show better
performance to detect a sensor measurement shift for
adaptive methods (residuals of EWMA) and when
monitoring the actuator signals in the control loop (e.g.,
airflow). The applicability of the methods is limited if they
do not account for changing process behavior. Therefore,
more complex methods should be developed and tested that
account for real-life process dynamics (e.g., temperature,
inhibition, changing loads, etc.). In this study, it has been
demonstrated that adapting the limits of the EWMA control
charts according to temperature changes improved the
performance of the methods. Further research will be
conducted to test improved methods (multivariate and
adaptive) and to assess costs and benefits of positive alarm
detection, false alarms, and speed.

It is expected that this work encourages engineers and
researchers to develop and test their own fault-detection
methods using the BSM1_LT platform together with the
proposed evaluation index.
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Glossary
Estimated state
4 Bio
State of a sensor/actuator obtained from a fault

detection system.
False acceptance
 The fault detection system does not detect a fault

when there is a fault occurring.
False alarm
 The fault detection system detects a fault when there is

no fault occurring.
Fault
 An undesired deviation of at least one characteristic

property or parameter of the system from the

acceptable/usual/standard condition.
Fault detection
 Determination of the faults present in a system and

the time of detection.
Faulty operation
 State of a sensor/actuator that indicates that a fault is

affecting the sensor/actuator functioning.
Monitoring
 The continuous real-time task of determining the

conditions of a physical system, by recording

information, recognizing and indicating anomalies

in the behavior.
Normal operation
 State of a sensor/actuator that indicates correct

functioning.
Penalty
 The disadvantage or painful consequences of a

condition action or inaction.
True state
 Known state of a sensor/actuator.
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