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Overview

Motivation

Conventional and Model Based Design
Uncertainty and Variability

Making Risk and Reliability Explicit
Probabilistic Design

Summary

Motivation

» Safety factors have not changed for decades

» Towards a paradigm shift:
— increased use of simulators for design and optimization
— simulator approach lacks reliability evaluation
— need for scientific approach to balance risk/benefits

* Why now?
— simulators are everywhere
— conventional design paired with model based design
— strict effluent guidelines & increased energy efficiency
— awareness among practitioners




2011-03-07

Motivation

To make the paradigm shift complete we
need to incorporate explicit uncertainty
evaluations in our model based design
and operations

Eindhoven WWTP
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Safety factor
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Why all this?

Variability Uncertainty
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Vanrolleghem, P.A. (2010) Principles of Uncertainty Evaluations. Workshop 203: How Will Your Wastewater Plant Really
Run? Evaluating Risk in Design and Operation WEFTEC, October 3, 2010, New Orleans.

A Motivating Example

Input Uncertainty

Consultant No 1:
Low process uncertainty

Consultant No 2:
Some process and
operational uncertainty

Consultant No 3:
High uncertainty associated
with influent

Model Simulation

Run model with
selected input
parameters

optimistic
denitrification rates

conservative
denitrification rates
and clarifier loading
rates

conservative influent
combination

Output Risk

Model predicted
variation in effluent
concentrations

Model predicted
effluent concentrations

Model predicted
effluent concentrations

Model predicted
effluent concentrations

Decision Analysis

Select design volume
and add (or not)
additional safety factors

Design volume
Xm?3

Design volume
2X m3
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How can we do better?

« Statistical description of
variability / uncertainty

» Assessment and
propagation are:

— the basis for quantitative risk assessment

 Risk of failure
 Risk = [Probability of failure] * [Cost of failure]

— essential for informed decision-making
— the methods are there...so, why not?

Uncertainty Propagation:
Monte Carlo

frequency
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Monte Carlo simulations

Inputs
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Monte Carlo
Simulation
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Eindhoven WWTP

Benedetti, L., et al. (2010) Wet-weather treatment upgrade scenarios with sensitivity and uncertainty analysis at
the Eindhoven WWTP. In: Proceedings of WEFTEC2010, New Orleans, LA, USA, 2-6 October 2010.

Objectives

EU Water Framework Directive: limit peak discharges
into the receiving water

Model-based analysis to reduce effluent NH,, TSS and
DO dips

Global sensitivity analysis (GSA): identify the most
important parameters for effluent peaks in wet weather

Monte Carlo (MC) scenario analysis: identify the
values for the operational parameters sets identified with
the GSA

Uncertainty analysis (UA): check the robustness of the
best scenarios
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Model implementation

controllers (for aeration, recycles, sludge waste)
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Global Sensitivity Analysis

* GSA on operational and bio-physico-chemical
parameters (8-day input)

* |dentify important parameters for plant
performance

* Select sensitive operational parameters

* Optimization (MC)

Sensitivity ranking
Most influential parameters: flow splitting and by-passes

TSS max

0
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Sensitivity ranking

NH4 %>3mg/I
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The important operational
settings

» Carbon source controller

» Cascade (NH,-DO) aeration controller
* Recycle controllers

e Sludge wastage

* Flow splitters

Uncertainty analysis

Multi-criteria analysis
9
uncertainty analysis (UA)
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Selection of best operational
parameters

» Generation of scenarios with Monte Carlo varying the
most important operational parameters

Ranking of scenarios according to multiple criteria
Selection of 5 best scenarios according to agreed criteria

Uncertainty analysis with Monte Carlo varying the most
important process model parameters

Process parameters for UA
(from the GSA)

* Influent fractionation

» Autotrophic biomass
* Oxygen transfer

» Hydrolysis

13
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Results

Scenario 5: 5th, 50th and 95th percentiles
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Results — variable averaging

periods
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CD curves: 24-hour (L) and 2-hour (R) averages.

Conclusions

* Asingle snapshot does not provide quantifiable
information about the reliability of a process
design

 Statistical description of variability / uncertainty.

» Uncertainty analysis can provide “reality” to
modeling results.

» Uncertainty results can be used to size a system
with an “appropriate” level or risk
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IWA/WEF
Uncertainty
Task Group

Establish the
state of the art

Primodal

Earth Essential Technologies|

Umbrella
DOUT

NSERC Project

(DCWATER, USA,

Canadian
Government)

Evaluate current
design guidelines
Propose a risk
based design
methodology

Water Board
DeDommel,
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Post project
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reliability of design
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development for
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removal plants
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