

Modelling the dynamic behaviour of pesticides in river systems

K. Holvoet^{1,2}, P. Seuntjens², A. Van Griensven^{1,4}, V. De Schepper¹, V. Gevaert¹, P. Vanrolleghem^{1,3}

¹Ghent University - BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Coupure Links 653, B-9000 Gent, BELGIUM

² Flemish Institute for Technological Research (VITO), Land and Water Management, Boeretang 200, B-2400 Mol, BELGIUM

³ modelEAU, Département de génie civil, Pavillon Pouliot, Université Laval, Québec G1K 7P4, QC, CANADA

⁴ UNESCO-IHE Water Education Institute, P.O. Box 3015, 2601 DA DELFT, THE NETHERLANDS

Objectives

The aim of the study is

- to model the transfer of pesticides to the river at the catchment-scale
- to model the transformation of pesticides in surface water

Study area

location

Nil-catchment

- small basin
- small basin - area: 32 km²
- length: 14 km
- well documented
- Demer-catchment
- large basin
- area: 2130 km²
- length: 85 km
- also fruit orchards (drift)

Monitoring

- 2004: Nil: upstream and at the mouth, from 15 March 15 June 2005: Demer: 3 upstream rivers and at the mouth: 15 May 27 June
- composite water samples: 50 ml taken every 15 min. and mixed over 8 hours
- analysis of pesticides in solution and bound to suspended solids:
 atrazine, carbendazim, chloridazon, diuron, isoproturon, lenacil, simazine

Modelling at the catchment-scale

Results and Discussion

Hydrodynamics (SWAT)

-> dynamic system, driven by rainfall/run-off (run-off parameters are most sensitive)

Pesticide transfer from agricultural fields to surface water (SWAT)

-> most important sources are point and run-off sources, drift is of minor importance

Pesticide behaviour in the river

-> importance of in-river processes is ilmited for the case studied

Lessons learned

- -Water flow and pesticide behaviour at the catchment-scale could be modelled adequately using SWAT
- -Run-off is dominating river water flow in this case
- -Point sources are important
- -Drift is relatively unimportant
- -Attenuation in the river is more important for larger rivers

