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Assessing the convergence of LHS Monte Carlo

simulations of wastewater treatment models

Lorenzo Benedetti, Filip Claeys, Ingmar Nopens and Peter

A. Vanrolleghem
ABSTRACT
Monte Carlo (MC) simulation appears to be the only currently adopted tool to estimate global

sensitivities and uncertainties in wastewater treatment modelling. Such models are highly complex,

dynamic and non-linear, requiring long computation times, especially in the scope of MC simulation,

due to the large number of simulations usually required. However, no stopping rule to decide on

the number of simulations required to achieve a given confidence in the MC simulation results has

been adopted so far in the field. In this work, a pragmatic method is proposed to minimize the

computation time by using a combination of several criteria. It makes no use of prior knowledge

about the model, is very simple, intuitive and can be automated: all convenient features in

engineering applications. A case study is used to show an application of the method, and the results

indicate that the required number of simulations strongly depends on the model output(s) selected,

and on the type and desired accuracy of the analysis conducted. Hence, no prior indication is

available regarding the necessary number of MC simulations, but the proposed method is capable

of dealing with these variations and stopping the calculations after convergence is reached.
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INTRODUCTION
The recent mounting demand for uncertainty analysis (UA)
and global sensitivity analysis (GSA) in wastewater treat-
ment modelling (Belia et al. ) entails the use of

appropriate (methodological) tools to perform such studies
(Benedetti et al. ). The former, UA, concerns the propa-
gation of parameter uncertainty to output uncertainty. The

latter, GSA, aims at quantifying the influence of parameter
variation, within their whole (global) domain, to model
output changes.

The basis of all the (rare) UA and GSA studies so far
conducted in wastewater treatment is Monte Carlo (MC)
simulation (e.g. Benedetti et al. ; Bixio et al. ;
Flores-Alsina et al. ; McCormick et al. ; Martin

; Sin et al. ).
MC simulation requires a large number of runs of waste-

water treatment models, which are complex, non-linear and

dynamic with high computational demands. It is, therefore,
very important to define and apply a stopping rule to have
the minimum number of runs sufficient to satisfactorily

obtain the result pursued by the modeller. This is actually
a quite unexplored aspect of MC simulation, also in domains
other than wastewater treatment plant (WWTP) modelling
(Ballio & Guadagnini ; Ata ). Usually a large

number of runs is executed and subsequently it is checked
whether the quantity of interest has converged or not (e.g.
Donigian & Love ; Rousseau et al. ).

In this work, Latin hypercube sampling (LHS) was used,
a pseudo-random sampling technique that allows to evenly
explore the parameter space and hence reduce the number

of MC runs compared to pure random sampling (McKay
et al. ). A first indication for the required number of
LHS simulations was given by Iman & Helton (), who
suggest running a minimum number of runs of at least 4/3

times the number of uncertain parameters. The same rule
is suggested by Manache & Melching (), although also
noting that it may not be sufficient for models with highly

non-linear properties (e.g. WWTP models). Some indication
about the necessary number of runs, to be calculated a priori
as a function of the desired percentile and confidence

interval, can be found in Morgan & Henrion (), but,
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according to the authors’ experience, this is also a function

of the complexity of the model and of the number of its
parameters.

In this article, a very simple and intuitive empirical

method to define stopping rules of LHS-MC simulation is
introduced and illustrated by means of a case study of
WWTP modelling.
THE PROPOSED CONCEPT

MC simulation should stop when the UA/GSA results “con-
verge”. When defining a stopping rule of MC simulation, it is
really up to the modeller to decide when the MC simulation

results have reached a satisfactory convergence. Conver-
gence can be defined as small variability of MC simulation
results (e.g. the average effluent concentration) obtained

from N to Nþ n runs, where n is the increment of runs for
which the MC simulation results are evaluated. This small
variability must prove to remain small after a number of

runs.
The main user inputs of the method would be the selec-

tion of:

1. the model outputs;
2. the number of runs n per batch of MC simulations;
3. the maximum number of batches b;
4. one or more criteria (linked to the model outputs) to

evaluate the MC convergence; in this article the adopted
criteria to be quantified are:

• the width of the band within which the variability is
deemed acceptable;

• the length of the band (number of runs) necessary to
consider the small variability as stable.

The concept proposed in this article is similar to the
more complicated method of Ata (), who also suggests

using width and length of a band, but requires a preliminary
MC experiment to estimate quantities.
MATERIALS AND METHODS

The case study used to illustrate the method is the model of
the Eindhoven WWTP (Benedetti et al. ), designed for

nutrient removal. It is a rather complex model, with 16 acti-
vated sludge units modelled with a modified ASM2d model
(Gernaey & Jørgensen ), five settlers, two buffer tanks

and five complex controllers (two for aeration systems and
three for flow regulation systems). The model is fed with
an 8-day input file with data every 15 min and very dynamic

conditions of dry and wet weather, generating output data
with the same frequency. The model is implemented in the
WEST® simulator (MOSTforWATER, Belgium) and each

run takes on average 6.5 s.
The model outputs used for the GSA and evaluated for

each single run were:

• average NH4 concentration in the effluent;

• maximum NH4 concentration in the effluent;

• average total suspended solids (TSS) concentration in the
effluent;

• maximum TSS concentration in the effluent.

The MC simulation was carried out by assigning uni-
form distributions to 15 operational parameters of the
model and sampling from those distributions with LHS.

Batches of 100 runs (n¼ 100) of 8 days were performed
for 30 times (b¼ 30) for a total of 3,000 model runs; this
value for n was deemed a reasonable trade-off, as having n
too large would prevent achieving significant savings in
the case that convergence is quickly reached (running too
many runs), and choosing n too small would prevent prop-
erly exploring the parameter space, therefore losing the

advantages of LHS (reducing the stratification of sampling),
unless incremental LHS sampling techniques are used
(Stein ). The notation in the following will be: Ni¼
Ni�1þ n with i¼ 1,… , b.

For each batch of 100 runs the seed of the LHS algor-
ithm was changed to have completely independently

sampled parameter values.
A GSA with linear regression and calculation of the

standardized regression coefficient (SRC) values (for more

details on the method see Saltelli et al. ) was executed
after each batch on the cumulative number of output files
(100, 200,… , 3,000) for a total of 30 times to check the con-
vergence of the GSA results.

The two convergence criteria evaluated after each batch
of 100 runs for the cumulative number of runs were the
following:

• model output variability: expressed as the percentage of
change of model output from Ni�1 to Ni runs, calculated
for the average, 5th, 50th and 95th percentiles, for each of
the four model outputs; a possible width of variability

band to define small differences may be ±1%; the varia-
bility is stable with Ni runs if the variability stays within
the band with Ni, Ni�1,… , Ni�j runs, where j is a

number of batches considered sufficient to prove stability
(length of the variability band).
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• stability in parameter selection: the ranking and selection

of significant parameters according to their SRCs; the
selection is stable with Ni runs if the selection of par-
ameters is the same with Ni, Ni�1…Ni�j runs.

To summarize, the user inputs in this example are the
following:

1. outputs: average and maximum NH4 and TSS effluent
concentrations;

2. n¼ 100;

3. b¼ 30;
4. criteria: model output variability and stability in par-

ameter selection:

• band width for variability: ±1%;

• band length for variability: a suggestion will be pro-

vided in the results.
RESULTS AND DISCUSSION

The results of the model output variability criterion for the
four model outputs are shown in Figures 1 and 2. A few
observations:

• in all cases, the calculated quantities seem to converge
after 3,000 runs;

• in general, in the first few batches the 5th and 95th per-
centiles tend to show more variability;
Figure 1 | Model output variability for NH4 concentration in the WWTP effluent; on the y axis the

batch number i (the difference between i and i � 1 is calculated only from the sec
• output averages converge faster than 50th percentiles;

• TSS shows more convergence problems than NH4;

• for NH4 average and maximum, the number of runs
after which the percentage relative difference (output

variability) is always below 1% is 800 and 600
respectively;

• for the TSS average and maximum, the output variabil-
ity is always below 1% after 1,100 and 1,300 runs

respectively;

• the maximum number of batches between the first time
that all quantiles are within the ±1% band and the next

time at least one quantile is outside that band is five,
which happens for NH4 average between batch 3 and
batch 7; this means that, in this case, the suggested

band length for model output variability is five batches
of 100 runs each.

In the following paragraphs, the stability in parameter
selection is analysed for the four model outputs. Table 1
shows the parameter ranking and the cumulative sensitivity
fraction (CSF) for the four selected model outputs, both for
30 batches and for the number of batches after which the

model output variability remains within the ±1% band
(see Figures 1 and 2). The higher the absolute value of
SRC, the more sensitive the output is towards variations of

that parameter. The CSF for a given parameter is (see
Equation (1)) the sum of the absolute values of the
percentage relative difference of model output between batch i � 1 and i; on the x axis the

ond batch on); after the vertical line the variability stays within the ±1% band.



Figure 2 | Model output variability for TSS concentration in the WWTP effluent; on the y axis the percentage relative difference of model output between batch i � 1 and i; on the x axis the

batch number i (the difference between i and i � 1 is calculated only from the second batch on); after the vertical line the variability stays within the ±1% band.

Table 1 | Stability in parameter sensitivity ranking: parameter rank and cumulative sensitivity fraction (CSF) for the four selected model outputs after 30 batches and for the number of

batches after which the model output variability is always below the ±1% band (see Figures 1 and 2); in grey cells the parameters which have a total CSF up to at least 0.9

(explaining 90% of the output variability); “par.” stands for “parameter name”.

NH4 average NH4 maximum TSS average TSS maximum
30 8 30 6 30 11 30 13

par. CSF par. CSF par. CSF par. CSF par. CSF par. CSF par. CSF par. CSF

J 0.21 N 0.21 I 0.28 I 0.27 H 0.46 H 0.45 H 0.54 H 0.52

N 0.41 J 0.41 H 0.51 H 0.51 G 0.73 G 0.71 I 0.82 I 0.79

K 0.58 K 0.58 N 0.63 N 0.63 I 0.92 I 0.89 G 0.91 G 0.88

L 0.65 O 0.65 J 0.73 J 0.72 A 0.94 K 0.91 A 0.93 E 0.90

O 0.72 L 0.73 K 0.83 K 0.81 K 0.95 E 0.93 L 0.94 J 0.92

M 0.78 M 0.79 F 0.87 O 0.86 D 0.96 C 0.94 E 0.96 A 0.93

F 0.83 C 0.85 O 0.90 F 0.91 F 0.96 A 0.95 D 0.96 O 0.94

C 0.88 F 0.89 M 0.92 L 0.93 C 0.97 O 0.96 M 0.97 C 0.95

E 0.92 E 0.93 L 0.94 M 0.95 E 0.98 N 0.97 C 0.98 L 0.96

H 0.95 H 0.95 E 0.96 C 0.96 L 0.99 F 0.98 K 0.98 K 0.97

I 0.97 I 0.97 D 0.98 D 0.97 N 0.99 B 0.98 J 0.99 F 0.98

D 0.98 D 0.98 A 0.99 G 0.98 B 1.00 J 0.99 N 0.99 D 0.99

B 0.99 A 0.99 B 1.00 B 0.99 M 1.00 M 0.99 F 1.00 B 0.99

A 1.00 B 1.00 C 1.00 A 1.00 J 1.00 D 1.00 O 1.00 N 1.00

G 1.00 G 1.00 G 1.00 E 1.00 O 1.00 L 1.00 B 1.00 M 1.00
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sensitivity coefficients (in this case the SRCs) from the high-
est absolute value down to the absolute value of the SRC of
that given parameter, divided by the sum of the absolute
values of the SRCs of all parameters. A criterion to select sig-
nificant parameters could be to consider as significant the
set of parameters that have a CSF value up to 0.9, i.e., the
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parameters that all together describe 90% of the output

variability.

CSFm ¼

Pm

k¼1
SRCkj j

Pp

k¼1
SRCkj j

ð1Þ

where the SRCs are ranked in decreasing order of absolute

value (e.g. SRC1 has the largest absolute value), m is the
rank of the parameter for which the CSF is calculated and
p is the total number of parameters (15 in this case).

From Table 1 it can be observed that for NH4 average
and NH4 maximum stability in parameter selection is
already achieved when model output variability within the

±1% band is achieved. The number of batches necessary
to reach stability in parameter selection for TSS average
and TSS maximum is larger (12 and 23 respectively, not

shown) than the one to have model output variability
within the ±1% band (11 and 33 respectively), indicating
that the stability of the TSS-influential parameter set is less
than the stability of the statistical properties of TSS. Stop-

ping after a lower number of batches would have led
anyway to a conservative decision for the selection of par-
ameters significant for TSS, as in both cases one more

parameter is included as significant with fewer batches.
This property of stability cannot be proven, but it has
always been noticed by the authors, with several models of

different complexity.
It is clear that the achievement of convergence is strongly

dependent on the criterion adopted to evaluate the conver-
gence, and that for the given criteria the number of runs

necessary to reach convergence varies between 40 and 150
times the number of uncertain parameters, in contrast to
what was found in previous works (only by checking the con-

vergence, without the incremental approach of this work). In
particular, Rousseau et al. () accepted 15 times, Donigian
& Love () 20 times, Manache & Melching () 4/3 to

three times and Benedetti et al. () 50 times.
CONCLUSIONS

A method to find the minimum required number of runs
in MC simulations of WWTP models has been presented
and illustrated by means of a case study. Its pragmatism

and easy automation make it suitable for engineering
applications.
The main conclusion from the case study is that different

criteria to assess the MC convergence lead to very different
numbers of runs. This is actually in contrast to what is
reported in previous works.

In particular, with the complex non-linear model used
and with 15 uncertain parameters, the number of runs
necessary to reach convergence for the different combi-
nations of model outputs and convergence criteria varies

between 40 and 150 times the number of uncertain
parameters.
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