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ABSTRACT

Activated sludge models can be very useful for designing and managing wastewater treatment

plants (WWTPs). However, as with every model, they need to be calibrated for correct and reliable

application. Activated sludge model calibration is still a crucial point that needs appropriate

guidance. Indeed, although calibration protocols have been developed, the model calibration still

represents the main bottleneck to modelling. This paper presents a procedure for the calibration

of an activated sludge model based on a comprehensive sensitivity analysis and a novel step-wise

Monte Carlo-based calibration of the subset of influential parameters. In the proposed procedure

the complex calibration issue is tackled both by making a prior screening of the most influential

model parameters and by simplifying the problem of finding the optimal parameter set by splitting

the estimation task into steps. The key point of the proposed step-wise procedure is that

calibration is undertaken for sub-groups of variables instead of solving a complex multi-objective

function. Moreover, even with this step-wise approach parameter identifiability issues may occur,

but this is dealt with by using the general likelihood uncertainty estimation (GLUE) method, that so

far has rarely been used in the field of wastewater modelling. An example from a real case study

illustrates the effectiveness of the proposed methodology. Particularly, a model was built for the

simulation of the nutrient removal in a Bardenpho scheme plant. The model was successfully and

efficiently calibrated to a large WWTP in Sicily.
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INTRODUCTION

In recent years, the use of mathematical modelling of waste-

water treatment processes has gained increased interest,

largely due to the great benefits furnished from its employ-

ment during plant design phases as well as during operational

management. The integration of knowledge by means of

mathematical models is useful for several reasons: (i) such

models make it possible to test hypotheses on functional

interactions in the system; (ii) they are compact and trans-

parent archives of knowledge about a system that facilitate

communication among engineers and scientists; and (iii) they

can be used for predicting future states of the system or its

responses to assumed or expected changes in driving condi-

tions (Reichert & Vanrolleghem 2001). Indeed, several mod-

els have been developed to aid the design, operation and

research of wastewater treatment plants (WWTPs). In 1987, a

Task Group of the International Water Association (IWA)

introduced the Activated Sludge Model no. 1 (ASM1) for the

description of biological chemical oxygen demand (COD)

and nitrogen removal (Henze et al. 2000). Following the

development of the ASM1 model, this Task Group developed
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the ASM2 model to also include phosphorus removal, and,

to compare results, the assumptions underlying ASM1 were

re-used as much as possible.

As with every model, for a correct and reliable applica-

tion, ASMs need to be calibrated. Due to the fact that

ASMs are complex environmental models, model calibra-

tion is a very challenging task. Indeed, complex environ-

mental models are generally characterized by several

parameters to be assessed and also several model outputs

to be fitted with the measured data. Further, especially for

the quality aspects limited data are generally available

due to the fact that they require large economic as well as

human resources. Owning to these aspects, complex envir-

onmental models are generally over-parameterized and

identifiability issues have to be faced (among others,

Reichert & Omlin 1997; Weijers & Vanrolleghem 1997;

Dochain & Vanrolleghem 2001; Freni et al. 2011). In the

past three decades, the model calibration issue has been the

object of numerous publications among the scientific litera-

tures and different model calibration approaches and opti-

mization techniques were proposed or discussed according

to the modelling focus (e.g. Van der Molen & Pintér 1993;

Wang et al. 1995; Petersen et al. 2003). In the field of WWTP

modelling the problem of model calibration and the issue of

the identification, estimation and control of processes was

first discussed by Beck in 1986 underlying the important

role of model uncertainty in the model calibration (Beck

1986, 1987, 1991). The problem has also been undertaken by

applying the ASM models. As a matter of the fact, several

applications of ASM models are present in the literature

concerning both pilot and full-scale plants, but only a few

deal with effective model calibration to real WWTPs (Van

Veldhuizen et al. 1999; Brdjanovic et al. 2000; Petersen

2000; Makinia et al. 2006; Vandekerckhove et al. 2008;

Mannina & Viviani 2009). All these applications, while

highlighting both the benefits and difficulties encountered,

have mainly served to show how laborious the implementa-

tion of ASMs can be. Numerous applications of ASMs have

demonstrated, for example, that the ASM parameters are

not universal in the sense that not all systems can be

modelled using the same parameter values (Weijers &

Vanrolleghem 1997; Brun et al. 2002). Site-specific model

parameters must be obtained by calibration with experi-

mental data. Dedicated measurement campaigns consisting

of intensive sampling and measurements of influent and

effluent variables, every few hours over a period of a few

days to a week, are typically used to capture the dynamics in

a WWTP (Sin et al. 2005; Freni et al. 2010). As a conse-

quence, model application to a full-scale WWTP can be a

major challenge. Moreover, the large number of parameters

of ASMs in comparison to the limited amount of data

means that not all parameters can be uniquely estimated

(Weijers & Vanrolleghem 1997; Brun et al. 2002).

With the objective of aiding modellers during such

complex calibration studies, different systematic calibration

protocols have been proposed in recent years: the STOWA

protocol (Hulsbeek et al. 2002), BIOMATH (Petersen et al.

2002; Vanrolleghem et al. 2003), the WERF (Water Envir-

onment Research Foundation) protocol (Melcer et al. 2003)

and HSG (Hochschulgruppe) (Langergraber et al. 2004).

An important characteristic of these protocols is that they

do not have the ambition to estimate all parameters, but

rather they estimate only a subset of them. The way these

subsets are obtained is quite different throughout the dif-

ferent protocols (expert-based, prior sensitivity analysis,

etc.). Sin et al. (2005) made an initial evaluation of these

four protocols.

Importantly, in view of the approach developed in this

paper, Insel et al. (2006), proposed a step-wise methodology

for model calibration of nutrient-removing SBRs. The meth-

odology considered four iterative steps, sequentially calibrat-

ing to NH4-N, O2, NO3-N and PO4-P profiles. Corominas

et al. (2008) integrated this approach into the BIOMATH

protocol. As another important step forward, more recently,

Sin et al. (2008) proposed a Monte Carlo-based calibration

method for ASMs, similarly to Ruano et al. (2007) where

instead the Monte Carlo method was used to define identifi-

able parameter subsets. Recently, Mannina & Viviani (2010a)

and Mannina (2011) applied the step-wise methodology pro-

posed by Insel et al. (2006) for the model calibration of a river

water quality model. Although the number of model para-

meters was lower compared with the ASMs, the methodology

was very effective providing satisfactory results.

These calibration protocols tried to tackle the rather

complex calibration issue of ASMs, but this phase still

remains the weakest link in the overall modelling of activa-

ted sludge systems (Sin et al. 2005; Hauduc et al. 2009).

Moreover, each calibration study published in the literature
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has followed its own procedure in choosing the type of

laboratory experiments for the influent characterization and

the kinetic/stoichiometric parameter estimation, the defini-

tion of parameter subsets to be calibrated, the hydraulic

characterization and the settling characterization. This varia-

bility in approaches makes it difficult to compare the results

(Sin et al. 2005; Hauduc et al. 2009) and, unfortunately, the

point made by Sin et al. (2005) that a standard approach in

performing a calibration study for a WWTP model is lacking,

still holds.

Bearing in mind the considerations discussed above and

knowing that the calibration is still considered one of the

main bottleneck/time-demanding tasks in a modelling study

(Hauduc et al. 2009), the aim of the present work was to

propose a useful, flexible and simple procedure for model

calibration. The peculiarity of the proposed procedure is that

the combination of issues connected to the model complexity,

the lack of data and the large number of parameters involved

is solved by making a previous screening of the most influen-

tial model parameters, the grouping of outputs and subse-

quently estimating the parameters in a step-wise manner. The

procedure will be illustrated with a full-scale case study of a

WWTP with a Bardenpho scheme.

PROPOSED PROCEDURE

In this study, a sensitivity analysis and model calibration

methodology is proposed. The methodology consists of dif-

ferent steps in two major phases. In the first phase a pre-

liminary sensitivity analysis is carried out with the aim of

reducing the number of model parameters to be calibrated. A

novel feature is that rather than pursuing a single subset of

different parameters, different subsets are selected, each

focusing on a different group of output variables to be

described by the model under study. In the second phase

the model calibration is performed by means of a group-wise

Monte Carlo technique. In Figure 1, the sensitivity analysis

and the model calibration flow-chart are shown.

Proposed parameter subsets selection procedure

Sensitivity analysis is a decisive procedure to identify the

parameters that can have significant effects on modelled

process behaviour. It should be applied prior to numerical

parameter optimization (Brun et al. 2002; Petersen et al. 2002).

The influence of parameters can be affected by operating

conditions, the parameter values of the model, influent com-

position and type of sensitivity index (Saltelli et al. 2000).

The proposed parameter subset selection procedure is

based on the methodology proposed by Weijers & Vanrolle-

ghem (1997). In particular, the sensitivity analysis proposed

here is divided into six connected sequential steps (Figure 1).

The sensitivity analysis begins by considering the set

of model outputs of interest to the modeller (Step 1 of

Figure 1). More specifically, the experiments may be

planned according to the pursued objective in order to

collect as much information as possible. The sensitivity of

these representative model outputs will then be evaluated.

However, to accomplish the sensitivity analysis, a priori

assumptions on the model parameter values must be made.

In particular, default values drawn from the modeller’s

experience as well as from the relevant literature are

employed. The a priori values of the model parameters are

used as initial guesses for carrying out the sensitivity ana-

lysis (Step 2 of Figure 1).

In Step 3 of Figure 1 the variation range of the model

parameters and the type of distribution that will be used in

the Monte Carlo simulations are defined. The variation

range for each parameter should be the broadest range

drawn from the relevant literature (Hauduc et al. 2010).

Using a Monte Carlo sample, one model parameter is varied

at a time (OAT), in order to evaluate the influence of the

parameter on the model output (Step 4 of Figure 1). To

quantify the influence on the model outputs, the likelihood

measure of each model output and the corresponding

sensitivity coefficient are calculated (Step 5 of Figure 1).

In the present study the following equation was employed

as a likelihood measure

Lðyi/YjÞ ¼ exp
�s2

Mj�Oj

s2
Oj

� �
ð1Þ

where yI, represents the i-th set of (randomly generated)

model parameters and s2
Mj–Oj is evaluated as

sMj�Oj ¼
XK

i

ðMj;i �Oj;iÞ2 ð2Þ
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2. Define the set of a priori model
parameter values

3. Define the variation range and 
distribution of each model parameter

4. Monte Carlo simulations with
variation of single model parameters

5. Calculate the sensitivity coefficientsi,j

6. Define the set of the influential 
parameters for each representative 

model output

Phase 1: PARAMETER SUBSETS SELECTION

1. Define the set of representative model 
outputs

ii. Select the sensitive parameter subsets for 
each group

i. Define N groups of representative model 
outputs and their calibration order

7. Monte Carlo simulations with
the variation of influential parameter 
subset for the selected model outputs

9. Select the calibrated parameter subset 
values

10. Calibrated model parameters 

Phase 2: MODEL CALIBRATION

8. Calculate the overall model efficiency

Are all calibrated 
parameters also influential 

for the next group?

Yes No

b. Fix the non-
influential parameters

a. Include all influential 
model parameters in the

following i-th step  

i= 1,2, ..., N… i= 1,2, ..., N…

c. Include all influential 
model parameters in the

following i-th step  

iii. Select the first group of model outputs and 
corresponding parameter subset

Figure 1 9999 Flow chart of proposed sensitivity analysis and model calibration methodology.
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which is the sum of squared errors between model output

(Mj,i) and observation (Oj,i) of the j-th variable, while s2
Oj is

evaluated as

sOj ¼
XK

i

ðOj;i �OjÞ2 ð3Þ

which is the sum of squared errors between the observations

(Oj,i) and the average value of the observations (Oj) for the

period under consideration.

The likelihood measure according to Equation (1) varies

between zero and one, with a likelihood of one corresponding

to a perfect fit (Nash & Sutcliff 1970). As for large errors, as

the ratio goes to infinity, the likelihood becomes zero.

Because the model is characterised by more than one output,

it is suggested to use an overall model efficiency according to

the following equation

Ei ¼
Xn

j

ajLðyi/YjÞ ð4Þ

where Ei represents the weighted sum of the likelihood

measures of the n model outputs computed on the i-th

selected parameter set (yi) and aj is a normalizing constant

that represents the weight of the j-th model output. For each

model output j, it is proposed to compute the weight aj by

dividing the maximum value of the likelihood measure of the

model output j by the sum of the maximum values of the

likelihood measures of the other n � 1 model outputs. This

weighting is of course performed after all Monte Carlo

simulations have been completed.

The sensitivity analysis is now finalised by calculating so

called sensitivity coefficients according to the following

expression

si;j ¼
ðEmax; j� Emin; jÞ/E; j
ðKmax; i�Kmin; iÞ/K; i

����
���� ð5Þ

where j and i, respectively, represent the model output and

the model parameter, Kmax,i, Kmin,i and K,i, are respec-

tively, the maximum, the minimum and the average values of

the ith parameter while Emax,j, Emin,j and E,j are the

maximum, the minimum and the average values of the

efficiencies.

Following the evaluation of the sensitivity coefficients, the

set of the most influential parameters for each representative

output is defined (Step 6 of Figure 1). To achieve this

important step, first the sensitivity coefficients for each

model output are scaled to the maximum sensitivity coeffi-

cient for that output, obtaining the scaled sensitivity coeffi-

cients (ss,i). Thereafter, the scaled sensitivity coefficients (ss,j)

are sorted in decreasing order. According to the adopted

procedure a model parameter was considered influential if

its average scaled sensitivity coefficient was larger than 0.1.

This procedure is basically established to ensure that at least

one parameter will be selected for each output available

(Weijers & Vanrolleghem 1997).

Following Insel et al. (2006), the idea to group the model

parameters to be calibrated has been adopted. In contrast, in

this case parameters were not grouped according one output

variable, but rather different groups of model outputs and

corresponding influential model parameters were selected.

The groups were formed by putting together all variables

related to TSS, COD, N and P respectively. Subsequently,

an appropriate calibration hierarchy must be established on

the basis of interdependency of state variables (Step 6i of

Figure 1). For each group of outputs, for example, the nitro-

gen outputs (NH4-N, NO3-N, TKN) the influential para-

meters will be identified. In this way it becomes possible to

establish the order in which the step-wise procedure of the

model calibration will be carried out (see below). It is

important to note that it can happen that some parameters

belong to more than one model output. This is due to the fact

that those parameters influence more than one process. For

the calibration of these parameters one should choose the

optimized parameter value on the basis of multiple model

outputs, as explained below.

Proposed calibration procedure

Following the sensitivity analysis, the set of model parameters

to be calibrated has been reduced to the set of influential ones

grouped according to a number of related model outputs. For

the calibration, our experience is very good with the general-

ized likelihood uncertainty estimation (GLUE) methodology

(Beven & Binley 1992). GLUE is based on Monte Carlo

simulations: a large number of model parameter sets are

generated from the multidimensional parameter space, each
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with random parameter values selected from uniform prob-

ability distributions for each parameter in order to explore

the whole confidence region (among others, Freni &

Mannina 2010). No correlation between parameters was

assumed. The acceptability of each set is assessed by com-

paring predicted to observed data throughout a chosen

likelihood measure/efficiency. This leads to a division of

all parameter set in two categories: parameters sets that

allows acceptable description of the data and set that are

unacceptable. The Monte Carlo sample dimension was

selected, verifying that the analysis had converged. Conver-

gence was evaluated by analyzing statistics and variations

and changing the sample dimensions between 1000 and

10000 simulations (Bertrand-Krajewski et al. 2002; Freni

et al. 2009a, 2009b; Mannina & Viviani 2010b).

The proposed model calibration is composed of four steps,

as shown in the bottom part of Figure 1. The procedure begins

with the selection of the first group of representative model

outputs and the corresponding model parameter subset (iii of

Figure 1) previously identified by the sensitivity analysis pro-

cedure (i.e., Step 6ii Figure 1). The model parameter subset is

calibrated according to the model outputs and the objective

function (Equation (4)) by carrying out the necessary Monte

Carlo simulations. For each Monte Carlo run, the likelihood

with respect to each representative model output (Equation

(1)) is calculated. After the Monte Carlo simulation has been

carried out, the overall model efficiency is determined (Equa-

tion (4)) and the best parameter values selected according to

the maximum value of Em,i (Step 8 in Figure 1).

Once the parameter subset values are evaluated, it is

checked whether all model parameters corresponding to the

first group are also influential for the next group of model

outputs. If all model parameters are influential for the next

group they will all be included in the following i-th step

(Step 9a of Figure 1) and the procedure returns to Step 7 of

Figure 1. Instead, if only a part of the model parameters

corresponding to the first group are also influential for the

next group, the non-influential parameters are fixed at their

calibrated values (Step 9b of Figure 1) before returning to

Step 7 of Figure 1 and the remaining parameters are included

in the following i-th step (Step 9c of Figure 1). The procedure

including Step 7–9a or c is repeated for the N groups of model

outputs by using the same parameter evaluation described

above. It is important to stress that if at least one parameter

corresponding to the first group is influential for the next

group all model outputs of the first group will also be included

in the next group. The final set of calibrated model parameter

values is obtained by combining the values of the parameters

that were fixed in previous steps (Step 10 of Figure 1).

MATERIALS AND METHODS

Case study – plant description

The municipal activated sludge WWTP under study is located

in Sicily (Italy), with its effluent discharged in the Mediterra-

nean Sea. The plant was designed for a capacity of 40,000

inhabitant equivalents (IE). The influent of the WWTP consists

of domestic and the non-industrial part of wastewater pro-

duced by a nearby refinery. After the pretreatment step (coarse

grit removal, fine grit removal, screen with rotating panel, sand

and grease removal) the influent is introduced into an equal-

ization tank with a volume of 1700 m3 in which the waste-

water is discontinuously aerated (3 h/d). The effluent of the

equalization tank flows to the biological nutrient removal

activated sludge plant (Figure 2) that consists of an activated

sludge reactor, according to a Bardenpho scheme, and a

secondary clarifier (with a volume of 2885 m3). The activated

sludge reactor is composed of three completely mixed com-

partments of different sizes. The first compartment operates as

an anaerobic zone, the second as an anoxic zone and the third

as an aerobic zone, with volumes (V) of 900, 1140 and

5800 m3, respectively. Return activated sludge (RAS) from

the bottom of the secondary clarifier and internal mixed-liquor

recirculation (MLR) from the end of the aerobic zone are,

respectively, pumped to the anaerobic and anoxic zones. The

influent flow rate (Qinf) is an average 400 m3/h; the mixed-

liquor recirculation flow rate (QMLR) and the return activated

sludge recirculation (QRAS) are generally set, respectively, to

3 and 1.5 Qinf. The waste activated sludge (WAS) is simply

dewatered by a belt-press filter. The sludge retention time

(SRT) during the period under study was around 20–25 days.

Measurements

All necessary design and operational data, such as zone

volumes, pump flows, Qinf, QMLR, and QRAS were initially
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recorded. An intensive dedicated measurement campaign

was carried out from 01 March 2006 to 12 April 2006. The

grab wastewater samples were withdrawn from the effluent of

each zone (sections 1–4 in Figure 2) and from the RAS

channel (section 5). It is important to underline that the

samples were not withdrawn simultaneously. Indeed,

between samples at one and a subsequent section, a lag

time was set according to the hydraulic retention time

(HRT) of the corresponding tank. The HRT of each tank

was computed by dividing the volume of the tank to the

inflow for the tank, also taking into account the recycle flow.

The following characteristics of the samples were ana-

lyzed according to IRSA methods (Istituto di Ricerca Sulle

Acque 1994): total suspended solids (TSS), (CODsup), CODsol,

NH4-N, NO3-N, NO2-N, orthophosphate (PO4-P), TP, total

kjeldahl nitrogen (TKN), sludge volume index (SVI), dis-

solved oxygen (O2) and air-flow rate. The measure of CODsup

was performed on supernatant samples (the supernatant

samples were taken from the surface after 2–3 minutes of

decantation), whereas the measures of CODsol and TPsol were

performed on filtrate samples (through a 0.45 mm GF/C

filter). In Table 1 the average values of the measured variables

are reported. It is important to precise that the high average

effluent TSS concentration is due to the abnormal functioning

of the secondary settling which sometimes occurred during

the measurement campaign.

As discussed above, six sampling sections were consid-

ered; the collected data were all used for the model calibra-

tion, while the average values for each component and

section were adopted as initial conditions.

Another 1-day sampling campaign was conducted, during

which samples were withdrawn only from the influent chan-

nel every 2 hours between 8:00 am (19/06/2006) and 8:00 am

(20/06/2006). The data were used to determine the daily

pattern of several influent pollutants necessary for the imple-

mentation of the long-term WWTP simulation.

Influent characterization

Influent characterization is one of the dominant factors in

WWT modelling (Roeleveld & van Loosdrecht 2002). This

influent characterization consists of translating data available

from the WWTP into data that can be used in the model

(Vandekerckhove et al. 2008). In this study influent charac-

terization was carried out by means of data collected during

the measurement campaigns.

Secondary
clarifiers

RAS

MLR

Anaerobic

tank

V=900m3

Anoxic

tank

V=1140m3

Aerobic

tank

V=5800m3

WAS

TSS

Section 4

Section 0
CODTOT; CODsol;N-NH4

N-NO2; P-PO4; TP
TSS ;TKN ; N-NO3

Section 1
CODsup; N-NH4; P-PO4

TPsol; TSS

Section 3
CODsup; CODsol ; N -NH4; N-NO3

P-PO4; TPsol; TSS; SVI
O2; TKN

Section 2
CODsup; N-NH4

N-NO3; TSS

Section 5
CODsup; N-NH4 ; N-NO3

TSS; TPsol

Figure 2 9999 Flow sheet of WWTP with locations of sampling points.
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Regarding the influent organic matter fractions, four

components were considered: the soluble biodegradable

COD (SS, the sum of SF and SA), the non-biodegradable

soluble COD (SI), the biodegradable particulate COD (XS)

and the non-biodegradable particulate COD (XI). Hetero-

trophic and autotrophic biomasses were considered neg-

ligible in the influent. With the aim of defining an appropriate

set of fractionation coefficients, exclusively connected to the

CODsup, the procedure as indicated by Makinia et al. (2005)

was preliminarily employed. Since the volatile fatty acid

(VFA) and BOD5 concentrations were not measured, the

following assumptions were made by drawing upon the

relevant literature (Henze et al. 2000; Makinia & Wells

2000; Meijer et al. 2002; Ferrer et al. 2004): the VFA fraction

(SA) was set equal to 8 per cent of the CODsup and the BOD5

equal to 45 per cent of CODTOT. The fractional coefficients

derived according to Makinia et al. (2005) as well as the

employed hypotheses are: FSF¼ 0.25, FSA¼ 0.08, FSI¼ 0.02,

FXS¼ 0.55 and FXI¼ 0.1 (Table 2). These values were con-

sidered as parameters in the calibration procedure and were

then adjusted to obtain the best fit between the measured and

simulated values.

Regarding the nitrogen components, it was assumed that

the measured values for NH4–N and NO3–N were equal to

SNH4 and SNO3, respectively. The ratio between SNH4 and

TKN was assumed equal to 70 per cent in order to cope with

the absence of specific data on such concentration values.

Accordingly, SND and XND were taken as 20 and 10 per

cent of the indirectly derived TKN, respectively (Henze et al.

2000). Concerning the phosphorus model components, the

measured values of PO4–P were considered as inorganic

soluble phosphorus (SPO4 model component) and TP was

considered as the sum of PO4–P and the other phosphorus

fractions.

Model description and assumptions

The previously described sensitivity analysis and model cali-

bration methodology has been applied to calibrate a model

able to describe the nitrogen and phosphorus removal pro-

cesses on the basis of data collected at a real municipal

activated sludge WWTP.

In order to simulate the nitrification-denitrification/

enhanced biological phosphorus removal processes occurring

in the studied full-scale WWTP, the ASM2 was selected

similarly to Amano et al. (2002). The model was used to

simulate the following variables: ammonia (NH4-N), nitrate

(NO3-N), total soluble phosphorus (TPsol), supernatant COD

(CODsup), dissolved oxygen (SO2), particulate material (XTSS)

and soluble COD (CODsol

The CODsup, CODsol, XTSS and TPsol were assessed as

follows from the ASM2 state variables

CODsup ¼ SF þ SA þ SI þ fNS?ðXI þXS þXH þXAUT

þXPAO þXPHAÞ ð6Þ

where fNS represents the non-settleable fraction of the parti-

culate organic variables and has been computed subtracting

the CODsol from the CODsup and by dividing by the sum of

the particulate organic variables.

CODsol ¼ SF þ SA þ SI ð7Þ

Table 1 9999 Average measured values during the campaign from 01/03/2006 to 12/04/2006

Average measured values [mg/L]

No. Section k CODsup CODTOT CODsol O2 P-PO4 TP TPsol N-NO2 N-NO3 N-NH4 TKN TSS SVI

0 � 422 78.5 � 1.5 2 � � 0.5 32.5 33.5* 190 �
1 239 � � � 2.26 � 2.64 � � 22 � 6667 �
2 120.5 � � � � � � � 1.3 15 � 6800 �
3 54 � 11.5 2.5 0.64 � 1 � 18.8 0.09 20* 9400 80

4 � � � � � � � � � � � 180 �
5 173 � � � � � 0.75 � 7.8 0.08 � 10550 �

(*only two measures)
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XTSS ¼ iTSS;XI?XI þ iTSS;XS?XS þ iTSS;BM?ðXH þXAUT

þXPAOÞ þ iTSS;XPP?XPP þ iTSS;XPHAXPHA ð8Þ

where iTSS,XI, iTSS,XS, iTSS,BM, iTSS,XPP and iTSS,XPHA represent,

respectively, the TSS contents of XI, XS, of the sum of XH,

XAUT and XPAO, of XPP and XPHA.

TPsol ¼ SPO4 þ iPSF?SF þ iPSI?SI ð9Þ

where iPSF and iPSI are respectively the P contents of soluble

substrate SF and the P content of inert soluble COD SI.

For the sake of conciseness, in the following, the differ-

ences between the developed model and the ASM1 and

ASM2 models are outlined, referring the reader to the litera-

ture for the definitions of all model state variables, biological

processes, stoichiometry and kinetics (Henze et al. 2000).

Similarly to ASM2, the developed model includes cell

internal storage compounds. However, to improve model

performance, some of the ASM1 processes and components

were considered for addition to ASM2. In particular, the

ammonification process was employed to describe the release

of ammonium (SNH4) from soluble biodegradable organic

nitrogen (SND). In further analogy to ASM1, the hydrolysis

of particulate biodegradable organic nitrogen (XND) was

included as a separate process.

In contrast to ASM2, chemical precipitation of phos-

phorus was not included in the model because no chemical

flocculants were added.

As in most WWTPs the nitrite and nitrate inflow con-

centration were assumed to be zero, so the influent soluble

nitrogen only consists of ammonium and biodegradable

organic nitrogen. Besides, the measured values of the tem-

perature and pH, respectively close to 201C and neutrality,

were not strongly varying during the simulation period. The

latter two considerations enabled further simplification of the

model equations and therefore a reduction in the number of

model parameters to be considered for the calibration. The

kinetic parameters’ temperature dependency did not have to

be taken into account during calibration and the alkalinity of

the wastewater was not introduced as a model component.

Nevertheless, whenever the model is used at other

temperatures than 201C, the developed model uses the tem-

perature correction term according to van’t Hoff- Arrhenius,

in line with the ASM models (Henze et al. 2000).Ta
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WWTP influent model

To carry out WWTP simulations, a continuous input series in

terms of quantity and quality data is needed. To compose

such a long-term dynamic time series starting from discrete

measured input data, a truncated Fourier series was employed

(Mannina & Viviani 2009). Indeed, such series, after the

evaluation of the input characteristics on the basis of the

measured data, enables the simulation of a continuous

WWTP inflow. In this study, the Fourier series used is just a

sum of three superimposed sinusoids that is multiplied with

the daily measured concentration to make up a long-term

dynamic time series. Accordingly, the generic input variable,

Y, can be modelled by the following equation

YðtÞ ¼ m?ð1� ðb1?sin ðo1?tþ f1Þ þ b2?sin ð2o2?t
þ f2Þ þ b3?sin ð3o3?tþ f3ÞÞÞ ð10Þ

where b1, b2, b3, o1, o2, o3, f1, f2 and f3 are the series

parameters, t is the time and m is the daily average value of the

simulated variable.

As shown in Figure 3(a) the Fourier series moves through-

out a line that generally coincides with the horizontal line

whose value is the average of the variable being modelled. To

generate a long term series, since m value is generally not

constant from day to day, a linear relationship was considered

to avoid discontinuities (see Figure 3(b)). More specifically, a

line connecting the first average parameter value to the

following one was used. In order to evaluate the average

value, for the generation of a long term series, the simulated

variable is computed by using the following equation

mðtÞ ¼ mðtþÞ � mðt�Þ
tþ � t�

� �
?ðt� t�Þ þ mðt�Þ ð11Þ

where m(tþ ) and m(t-) are respectively the measured mean

value at the time tþ 1 and t�1.

WWTP hydraulics model

In the present study no WWTP flow propagation modelling

has been performed. Indeed, as usual in WWTP modelling, an

instantaneous flow propagation was considered through the

plant, neglecting any flow attenuation due to storage effects.

However, in term of mixing regime, only three CSTRs were

considered, assuming each one to be perfectly mixed.

Settler model

Concerning the settler, an ideal point settler was implemented

and the concentrations of the soluble components in the

return activated sludge were assumed to be equal to the

effluent concentrations from the aerobic reactor. The con-

centrations of the particulate components were computed by

means of the mass balance in the clarifier, as suggested by

Qian (2008).

RESULTS AND DISCUSSION

WWTP influent model

Starting from the collected data base, the measured data were

modelled according to the Fourier series Equation (10) by

adjusting the parameter values of the Fourier series to mini-

mize the sum of squared errors. Figure 4 compares the daily

patterns of the modelled input data according to the Fourier

series with the measured profiles.
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Once the Fourier parameters were estimated, a long input

time series for the overall simulation period (1 March to 12

April) was created starting from the measured daily values of

the influent concentrations (Figure 5). This pattern was

determined by copying the daily pattern (19–20 June 2006)

described by the truncated Fourier series to the full simulation

period on the basis of Equation (10). It is worthy to mention

that the forecasting of diurnal influent profile by means of the

Fourier series or other similar methods can induce bias into

data. Indeed, the uncertainty associated to the data of the

diurnal influent profile can propagate throughout the model

leading to pour results. Indeed, the uncertainty in the model

input could be higher than the model parameters uncertainty.

In view of this fact, it is advisable to reduce the input

uncertainty by gathering new data before carrying out

model calibration assessing the kinetic parameters.
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Parameter subsets selection

As discussed in the previous paragraphs, the model contains

41 parameters. To avoid the problem of overparameterization

and related identifiability issues a reduction of the number of

model parameters was carried out by means of the sensitivity

analysis shown in Figure 1. More specifically, the model

parameters were changed one at a time and the importance

of each model parameter was assessed for all model state

variables for which we have measurements.

The modelling objective in the present work is the descrip-

tion of the variable concentrations in different reactors and not

only in the effluent. According to this objective an appropriate

experimental campaign was performed, and all relevant vari-

ables were measured. For the present study, 15 model state

variables were considered, namely, SNH4,1, CODsup,1, SPO4,1,

TPsol,1, XTSS,1, SNH4,2, SNO3,2, XTSS,2, CODsup,2, SNH4,3, SNO3,3,

SPO4,3, TPsol,3, XTSS,3 and CODsol,3. According to the flow chart

in Figure 1, these variables were considered as the set of model

outputs (Step 1 of Figure 1). The first model parameter values,

mainly drawn from the literature, were also considered as a

priori model parameter values (Step 2 of Figure 1).

To perform the sensitivity analysis a uniform distribution

was chosen for each model parameter (Step 3 of Figure 1).

The upper and lower bounds of the uniform distributions of

the model parameters were defined according to the broadest

range found in the relevant literature (Jeppsson 1996; Weijers

& Vanrolleghem 1997; Henze et al. 2000; Afonso & da

Conceição Cunha 2002; Iacopozzi et al. 2007; Di Bella et al.

2008; Flores-Alsina et al. 2008; Sin et al. 2009; Mannina et al.

2010) (Step 3. of Figure 1). Note that a similar study has been

recently performed by Hauduc et al. (2010). In Table 2, the

values of the default model parameters along with the varia-

tion range, their literature references and the final calibrated

values are reported.

By varying one parameter at a time, a large set of para-

meters was obtained and the corresponding Monte Carlo

simulations were carried out (Step 4 of Figure 1) for the

44 days simulation period. It is important to remark that

for each simulation conduced the model was first run for

the steady-state conditions and then for the dynamic ones.

For each model run, the model likelihoods for each of the

chosen 15 model state variables were calculated (according

to Equation (1)).

The results of the Monte Carlo simulations were used to

evaluate the sensitivity coefficients of each j-th model output

and i-th model parameter, according to Equation (5) (Step 5

of Figure 1). Then, a set of most influential model parameters

for each representative model output was selected according

to the procedure described above (Step 6 of Figure 1).

In Figure 6, the results of the sensitivity analysis for four

of the 15 model outputs, CODsup,2 (a), SNH4,1 (b), XTSS,2 (c),

and SPO4,1 (d), as well as the total model influence of the

parameters, computed as the sum of the sensitivity coeffi-

cients of all variables (e), are reported. The coloured area

indicates the set of influential parameters for the correspond-

ing model output. As can be observed, some parameters are

influential for more than one model output, for example, Kx is

influential both for CODsup,2 and XTSS,2.

In Figure 6(e), the sums of the scaled sensitivity coeffi-

cients of all representative model outputs j for each parameter

i (SSSi,j) are reported, revealing that FSF, YH and mAUT are the

most influential model parameters in this case study. Such a

result is consistent with Ruano et al. (2007) who also found

FSF as one of the most influential model parameters in

ASM2d. They also found a high sensitivity for mAUT. On the

other hand, baut showed a low influence, again similar to

Petersen et al. (2002) and Ruano et al. (2007).

Table 2 summarizes the results of the sensitivity analysis

for each of the selected model outputs. By means of the

performed analysis, that is, quantitative prioritization of the

model parameters, it is possible to gain insights in the

performed processes. Among the non-influential parameters,

the sensitivity analysis reveals that, with the exception of

KAMM, bAUT and KLa, they are all parameters related to P

removal, indicating a higher relevance of the N-removal

processes over these processes. This agree with the fact that

the biological phosphorus removal remained is limited during

the measurement campaign. However, it has to be stressed

that with respect to their level of sensitivity the parameter

significance level may be different from one plant to another

because of changes in process scheme and available data

(among others, Ruano et al. 2007).

By means of the sensitivity analysis, the number of model

parameters to be identified was reduced from 41 to 27,

enabling a better capability for calibrating the model in the

second phase of the procedure. Although the number

of model parameters has been drastically reduced, not all
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influential parameters can be expected to be identifiable since

an OAT sensitivity analysis has been performed. In this

respect, a specific investigation based on an identifiability

analysis (see Weijers & Vanrolleghem 1997; Sin et al. 2008;

Freni et al. 2011) should be carried out. Nevertheless, in this

study we limited ourselves to single out the most influential

parameters since the GLUE method for calibration can

handle indirectly identifiability issues in contrast to other

parameter estimation methods.

Once the influential model parameters were singled out,

they were clustered into four groups according to the model

output group. The selection of the groups has been done

according to the objective of the study and the modeller

experience. In particular the model variables of the same

‘nature’ were put together forming a group and subsequently

a reasonable calibration hierarchy has been established.

According to the step-wise calibration procedure, the calibra-

tion of the parameters that were influential towards XTSS,1,

(a) (b)

(c) (d)

(e)

Figure 6 9999 Scaled sensitivity coefficients for CODsup,2 (a), SNH4,1 (b), XTSS,2 (c), SPO4,1 (d) and SSSi,j (e); (the coloured zone indicates influential parameters for the corresponding model output).
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XTSS,2, XTSS,3 (i.e., total suspended solid concentration in the

first, second and third tank, respectively) was to be accom-

plished. Following this first step, the other model parameters,

CODsup,1, CODsup,2, CODsol,3, SNH4,1, SNH4,2, SNH4,3, SNO3,2,

SNO3,3 and finally, SPO4,1, TPsol,1, SPO4,3, TPsol,3 were assessed

and included as model outputs in the parameter identifica-

tion. The model parameters influential towards each group

are reported in Table 2.

Calibration

Once the model parameters were defined with respect to

each group of the model outputs, 10,000 Monte Carlo model

runs were performed considering a uniform distribution of

the parameters and simultaneously varying the influential

parameters belonging to the selected model output group.

The same parameter ranges as used in the sensitivity analysis

were used (see Table 2) and no correlation between para-

meters was assumed. For each run, the simulation outputs

were compared with the measured data, calculating the like-

lihood according to Equation (1).

The final result for each model output group was the set

of values of the model parameters as selected on the basis of

the maximum overall model efficiency, calculated according

to Equation (4) (Step 9 of Figure 1). In this case, making a

selection of the model parameters by grouping according to

the proposed procedure, it was possible to obtain by the

GLUE only one parameter set value in correspondence to

the maximum efficiency.

In moving from one group of model calibration outputs to

the next group, if a parameter was influential towards more

than one model output, its value was assessed more than once

and the final value adopted would be the one corresponding

to the last output.

The values of the model parameters obtained in this

way are consistent with previous studies (Van Veldhuizen

et al. 1999; Brdjanovic et al. 2000; Henze et al. 2000;

Rieger et al. 2001; Meijer et al. 2002; Ferrer et al. 2004;

Makinia et al. 2005, 2006; Sin et al. 2008). However, some

values of the calibrated model parameters require further

discussion and it has also to be kept in mind that some

differences may be due to the modified structure of the

ASM2 model applied herein. As aforementioned the tem-

perature was constant in the simulated period and set

equal to 201C. Therefore, the kinetic model parameters

refer to that temperature.

The most influential model parameters calibrated for the

N model outputs, based on the scaled sensitivity coefficient,

are mAUT and KNH. The calibrated value of the nitrifiers

growth rate, mAUT¼ 1.08 d�1, is in agreements with literature

values (referred to a temperature of 201C): 1.2 d�1 (Makinia

et al. 2005), 1.8 d�1 (Rieger et al. 2001), 1 d�1 (Henze et al.

2000) and 0.55 d�1 (Ferrer et al. 2004). Conversely, referring

to KNH¼ 1.41 gN/m3, there is a substantial difference with

the value presented by Makinia et al. (2005) where the value is

0.2 gN/m3. However, lower values of this parameter are

commonly encountered in pilot plants due to a lower diffu-

sion limitation related to the higher turbulence and smaller

flocs in comparison with full-scale plants (Henze et al. 2000).

Among the calibrated parameter values to be discussed there

is also YPO4 because it’s calibrated value (YPO4¼ 0.11 gP/

gCOD) is not very close to the default value (Henze et al.

2000), see Table 2. However, similar results were obtained by

Machado et al. (2009) that explained their result by the

presence of glycogen-accumulating organisms (GAOs) not

considered by ASM2.

Starting from the calibrated model parameter values, a

dynamic simulation for the entire period was carried out. The

results of the simulations are presented in Figure 7. Further-

more, to assess the quality of the model fits, the mean

absolute error (MAE) and the root-mean-squared error

(RMSE) were used as quality indices. According to Table 3,

a summary of the above indices and the model efficiencies

Equation (1), globally satisfactory results were obtained, as

confirmed by the values of L(yi/Yj) ranging between 0.12 and

0.7. For TSS and COD for the 2nd and 3rd tank, L(yi/Yj) is a

little lower. In addition, the values of MAE indicate that the

model can be considered unbiased.

A good prediction accuracy with respect to the long-term

behaviour of SNH4 (Figure 7(b)), CODsup (Figure 7(a)) and

SPO4 (Figure 7(c)) was observed in the anaerobic zone (sec-

tion 1). The simulated values show an acceptable agreement

with the measured ones. Similarly, in section 2, the model fits

the measured SNH4 values well (Figure 7(d)), although in

some cases the model overpredicts. Such a disagreement is

likely due to the imperfect anoxic conditions in the second

tank that caused the nitrification process to occur there as

well by using the recycled oxygen. Indeed, due to the recycle
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Figure 7 9999 Comparison of simulated and measured concentrations during the long term period.
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of activated sludge a part of the oxygen mass is also recycled

into the anoxic tank. Regarding the XTSS,2 the good accuracy

between observed and simulated values is shown in

Figure 7(e), with the exception of the first period for which

a modest mismatch is also evident for the other variables. The

model also shows an acceptable agreement with the mea-

sured data for XTSS,3 (Figure 7(g)) but it shows bias for the

soluble COD in section 3, CODsol,3 (Figure 7(f)) (Table 3).

Comparing the simulated with the measured concentrations

of the overall set of selected model outputs it can be observed

that the model shows a weak ability to simulate the SNO3,3, as

demonstrated by the low likelihood value (0.28). Further-

more, the SNH4 in the first tank as well as the SNO3 in the

third tank are generally overpredicted. Such results could be

due to incorrect influent ammonia concentrations that are

higher than the real values. With regard to the TPsol,3 it

presents the lower likelihood value than for the other, proving

that modelling the biological phosphorus removal process

does not work well. Indeed, once the parameter values of the

Fourier series are evaluated, the prediction of the simulated

daily influent concentrations depends on the analysis of the

single measured value of the considered day. Such a value

may not be representative of the daily value and this will thus

affect the overall simulation of that component. In this case,

composite average values for the estimation of the daily input

pattern would likely be better and could have provided a

better agreement between measured and simulated values.

Further, a quantification of the uncertainty associated with

the model input and model parameters may help in under-

standing the need for gathering new data. However, it has to

be stressed that uncertainty analysis in wastewater modelling

field is limited to few studies (Bixio et al. 2002; Benedetti et al.

2008; Flores-Alsina et al. 2008; Belia et al. 2009; Mannina

et al. 2010).

CONCLUSIONS

A procedure for calibration of an activated sludge model

based on a comprehensive sensitivity analysis and a novel

step-wise Monte Carlo-based calibration of the subset of

influential parameters has been presented. A mathematical

model of a nitrification/denitrification enhanced biological

phosphorus-removal process was successfully used to illus-

trate the procedure on a full-scale plant.

The number of parameters to be calibrated was reduced

thanks to an accurate sensitivity analysis, during which the

influence on model response was evaluated by varying each

model parameter within its variation range using the one at a

time method. The model was subsequently calibrated by

utilising the GLUE methodology in order to deal with any

remaining the problem of model parameter ideantifiability.

The model parameters were calibrated through a new step-

wise procedure involving different subsets of model para-

meters corresponding to model outputs groups that were put

together before. In the illustrative key study the iterative

procedure has been applied for four model output groups

using calibration hierarchy must be established on the basis of

interdependency of state variables (first TSS group, second

COD group, third N group and at the end the P group). At the

end of the procedure, the values of the model parameters

were evaluated and showed to provide a good fit between

simulated and measured data.

A further development of the presented research will

regard the uncertainty assessment of the model results.

Such an aspect is crucial for the assessment of the model

reliability and is a field that is still underdeveloped due to the

fact that only a few studies have been performed until now.

Table 3 9999 Calibrated model fit

Model output MAE [mg/L] RMSE [mg/L] Likelihood [-] No.data [-]

CODsup,1 52.85 71.89 0.45 31

CODsup,2 48.39 58.41 0.37 33

CODsol,3 3.55 4.24 0.38 27

XTSS,1 1921.42 2490.62 0.33 33

XTSS,2 2205.84 2610.72 0.3 33

XTSS,3 1174.78 1550.09 0.7 33

SNH4,1 5.90 7.33 0.54 33

SNH4,2 3.99 5.18 0.65 33

SNH4,3 0.90 1.10 0.21 33

SNO3,2 0.75 0.99 0.13 33

SNO3,3 6.28 7.52 0.28 33

SPO4,1 0.37 0.46 0.6 33

SPO4,3 0.59 0.79 0.15 33

TPsol,1 0.53 0.64 0.4 33

TPsol,3 0.94 1.14 0.12 33
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