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Introduction
 Anaerobic digestion

Degradation of organic material to CH and CO

pH

Temperature

Toxics

 Degradation of organic material to CH4 and CO2

 Cost-effective solution for the                             
treatment of industrial wastewaters 

But…
 Instability and high sensitivity to                      

overloads and disturbances…

Alkalinity Nutrients
AD
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Necessity of monitoring and 
control strategies

Introduction
 Monitoring and control in AD

Obj ti t bilit ffi i CH d ti Objective: stability, efficiency, max. CH4 production 
 Instrumentation and handles: 
 On-line “key” variables: pH, Qgas, %CH4

 Influent flowrate to the reactor (Qfeed)

4

Qfeed DigesterEqualization tank 
(ET)Qinf

(Industrial 
wastewater)
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Introduction
 Control strategies in AD

V lid ti l i l b d il t l l t Validations only in lab and pilot-scale plants.
 Restrictions in Qfeed are not considered.
 Effects of ET are no considered.

Necessity to study the implications of
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Necessity to study the implications of 
including ET in a full-scale scenario

Introduction
 Extremum-seeking (E-S) controllers

M i i i i i bj ti f ti Maximize or minimize an objective function.
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 In AD: applied to maximize  the CH4 production. 
max. CH4 =  max. Qfeed

Time - d
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Introduction
 Extremum-seeking (E-S) controllers
….Restrictions in a full-scale plant with ET

… Max. CH4 Qfeed ↑↑ 

 Treated volume 
 Volume of ET

Qualitative behavior of E-S
Vtank

Qfeed

V E-S off E-S on
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4 feed

Vtank ↓  emptying of ET

… Conservative strategy 
Qfeed ↑  overflowing of ET

VGF

No production 
of CH4

E-S off E S on

Introduction
 Extremum-seeking (E-S) controllers

Qualitative behavior of E-S + VtankImportance of combining 
E-S with additional 
algorithms:

• Automatic regulation of 
Qfeed and CH4 as a 
f f

….As a result:

Vtank

Qfeed

V

8

Extra CH4
production

function of ET
• A more continuous 

feeding

VGF
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Objective
 Model-based design and validation of a controller 

that combines:that combines: 
 an E-S algorithm 
 exploiting the hydraulic capacity of ET

to regulate the CH4 production 

 Limitations

… trade-off between CH4 production 
and process efficiency
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 Limitations
 Non-linear problem
 Hydraulic capacity in ET
 Set-point adjustment Dynamical optimization
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Controller realization
 STEP 1. Previous E-S controller - LC

 Reference: Liu et al (2004 2005) Reference: Liu et al., (2004, 2005)
 Objective:To maximize the CH4 production and rejection of 

disturbances.
 On-line measurements: pH and CH4 gas flow (GFm)

t1
GFsp D = (GFm – GFsp )  –

Rule-based 
system m3

m3
CH4

reactor·d
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Upper-level
controller

Lower-level
controller-+

pHsp

-+

pH
Gas Methane Flow-rate (GFm ) -

Plant
(Tank + Reactor)

Qfeed

m3CH4 /m3
reactor·d

Controller realization
 STEP 1. Previous E-S controller - LC

   kKk

Upper-level
controller

Lower-level
controller-+

pHsp

-+

GFsp

pH
Gas Methane Flow-rate (GFm ) -

D = (GFm – GFsp )  –
Rule-based 

system

Plant
(Tank + Reactor)

m3

m3
CH4

reactor·d

m3CH4 /m3
reactor·d

Qfeed
t2 t1

t3t3 = 60min

t2 = 60min t1 = 15min

12

 Cascade scheme: simple P loops     keKuku p0 1
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Controller realization
 STEP 1. Previous E-S controller - LC

Upper-level
controller

Lower-level
controller-+

pHsp

-+

GFsp

pH
Gas Methane Flow-rate (GFm ) -

D = (GFm – GFsp )  –
Rule-based 

system
t3

t2

Plant
(Tank + Reactor)

Qfeed

m3

m3
CH4

reactor·d

m3CH4 /m3
reactor·d

t1
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 Cascade scheme: simple P loops
• Lower Controller  At t1, sets Qfeed as function of the error (pHsp – pH)

• Upper Controller  At t2, sets pHsp as a function of the error (GFsp – GFm)

 Rule-based system:   At t3 sets GFsp as a function of D (GFm – GFsp)

1

2

Controller realization
 STEP 1. Previous E-S controller - LC
 Rule-based system

• Observer of the digester’s state (“D”)
• Dmax and Dmin: determine the operational areas for D
• ∆GF increment to GFsp:

2

14

Dmax and Dmin force that pushes the 
process towards a higher or lower GFm
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Controller realization
 STEP 1. Previous E-S controller - LC
 Rule-based system

• Small values of Dmin,Dmax 
promote higher GFm and 
faster responses

• Dmax,Dmin could be tuned 
to promote different GFm
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Dmin =-0.14(1) 
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2

1

Dmin =-0.2(2) Dmin =-0.4(3) 
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Online adaptation of Dmax, Dmin as a 
function of the state of ET

Controller realization
 STEP 2. Proposed controller – FLC
 Bottom-layer: LC controller
 Additional Top-layer: automatically regulation of Dmax

and Dmin as a function of the hydraulic capacity in ET

16
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Controller realization
 STEP 3. Fuzzy module design

Selection of inputs, outputs, set of rules…
 Two inputs: Vtank, ∆Vtank

0

1

0 30 60 90 120 150 180
Vtank - m

3

    vsmall                small                  optim                  big                 vbig        
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tank

0

1

-200 -100 0 100 200 300 400
ΔVtank - m

3/d

    LN                N         Z                     P                              LP

LN: Large negative, 
N: negative…

Controller realization
 STEP 3. Fuzzy module design

Selection of inputs, outputs, set of rules…
 One output: K [-1 1]

Adaptation law with an 
incremental structure:

1minmin D*K)1t(D)t(D 

LLN         LN       MN      SN        SP         MP             LP                          

18

2maxmax

1minmin

D*K)1t(D)t(D

)()(


K

-1            -0.6      0.3     -0.04        0.3        0.6             1            
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Controller realization
 STEP 3. Fuzzy module design
 I/O mapping

• High values in Vtank and ∆Vtank

 high negative value of K 

 higher Qfeed values

• Low values in Vtank and ∆Vtank

K
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tank tank
 high value of K                                   
 lower Qfeed values.

Performance analysis
 FLC with dynamic influent

Influent load  kg COD/d
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… 6 months of realistic 
industrial wastewater

Qfeed Vtank
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Performance analysis
 FLC with dynamic influent ΔGF
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Qfeed Vtank

Dmin Dmax
D

GFstep

-GFstep

Dmin Dmax

Remember that…
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Performance analysis
 FLC with dynamic influent

GF t

∆GF

GF t

∆GF
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      CONTROL STRATEGY 

Performance analysis
 Systematic study

      CONTROL STRATEGY 
Index Acronym Units OL LC FLC 
Effluent Quality EQI Kg pollution/d 386 + 8% +13% 
COD Removal Efficiency REf % 59 + 6% +8% 
Unitary Methane Production UMp Nm3CH4/m3raw WW 0.74 + 6% +8% 
Energy Recovery EnR kWh/d 415 + 6% +8% 

External alkalinity  Kg CaCO3/d 79 - - 

 

O f
 LC controller

23

• Indexes are improved in comparison to OL without addition of alkalinity

• EQI improves by about  8%. REf, UMp y EnR improve by about  6%

Operational and economics benefits with LC

      CONTROL STRATEGY 

Performance analysis
 Systematic study

      CONTROL STRATEGY 
Index Acronym Units OL LC FLC 
Effluent Quality EQI Kg pollution/d 386 + 8% +13% 
COD Removal Efficiency REf % 59 + 6% +8% 
Unitary Methane Production UMp Nm3CH4/m3raw WW 0.74 + 6% +8% 
Energy Recovery EnR kWh/d 415 + 6% +8% 

External alkalinity  Kg CaCO3/d 79 - - 

 

C f
 FLC controller

= + 21%

= +14%
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• Indexes are improved in comparison to LC without addition of alkalinity

• EQI improves by about  13%. REf, UMp y EnR improve by about  8%

Important operational and economics benefits with FLC
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Conclusions

 The E-S controller (LC) on bottom layer guarantees 
a good disturbance rejectiona good disturbance rejection. 

 On-top, the fuzzy supervisory module optimizes the 
long-term operation based on the state of the equalization tank.

 Compared with manual operation, the FLC strategy reaches 
improvements of 14-21% on ALL performance indexes.

 These results stimulate the interest for further implementation of
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 These results stimulate the interest for further implementation of 
the proposed controller in industry.

Thanks for your attention…


