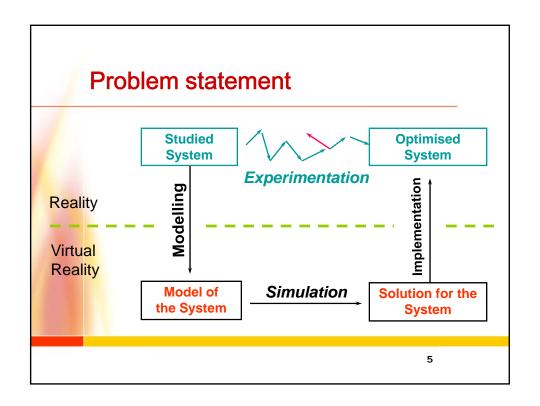


Overview

- Problem statement
- Objectives
- Materials and methods
- Modelling
- Results
- Conclusion

Problem statement

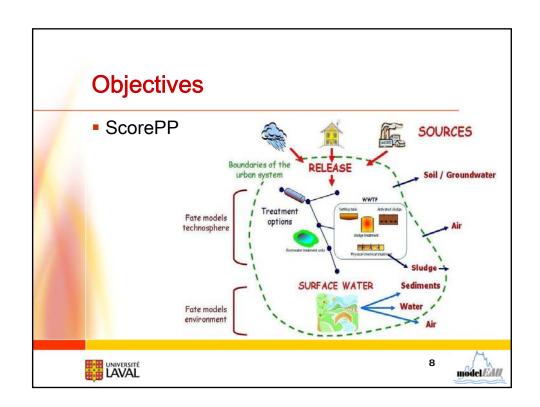

- Influent of a wastewater treatment plant
 - Traditional pollutants
 - Organic matter (excrements, food wastes, leaves)
 - Nitrogen (urine, fertilizer)
 - Phosphorus (detergent, fertilizer)
 - Toxic compounds
 - · Xenobiotic organic compounds
 - · Heavy metals

Micropollutants Emerging pollutants Priority pollutants

3

Problem statement

- Effluent of a wastewater treatment plant
 - A certain amount of pollutants will be rejected
 - But how much?
 - How can we improve the situation?
 - · Limit the use of certain products
 - · Modify the plant configuration/operation



Overview

- Problem statement
- Objectives
- Materials and methods
- Modelling
- Results
- Conclusion

Objectives

- Develop a model able to describe the fate of micropollutants and traditional pollutants in a WWTP
- ScorePP
 - Source Control Options for Reducing Emissions of Priority Pollutants

Objectives

- Example: Heavy metals
 - Origin
 - Tires (Zinc, Copper, Chromium)
 - Car parts (Lead, Cadmium)
 - Roofs (Zinc, Copper)

9

Overview

- Problem statement
- Objectives
- Materials and methods
- Modelling
- Results
- Conclusion

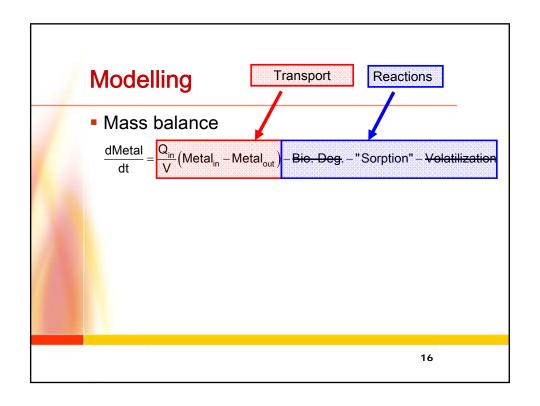
Materials and methods

- Case study: WWTP of Norwich, UK
- Activated sludge with anaerobic digestion
- Data collected in 1986
 - COD, SS, NH₄, heavy metals
 - 10 days, 3h interval
 - Different sample locations in the WWTP
 - Unique data set in the world

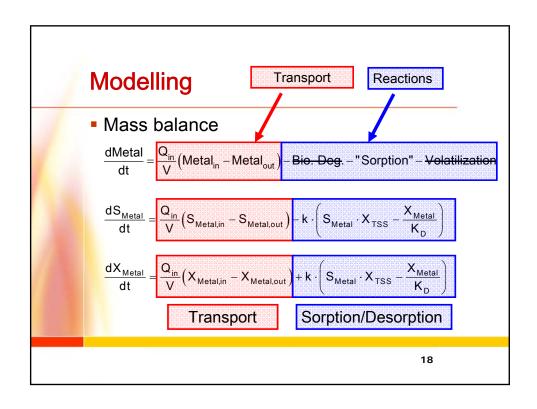
11

Materials and methods Verflow Overflow Sampling points Activated sludge system at the Norwich WWTP (Lessard and Beck, 1993)

- WEST® simulator
 - Developped by:
 - MOSTforWATER
 - BIOMATH



- Functionality:
 - Dynamic simulation
 - · Add/extend models yourself
 - Extensions for sewers (KOSIM) and rivers (RWQM1)


13

Materials and methods Sisph: To_Skidge_Treatment To_Skidge_Treatment_2 To_Drying_Beds The Norwich WWTP in the WEST simulator

Overview Problem statement Objectives Materials and methods Modelling Results Conclusion

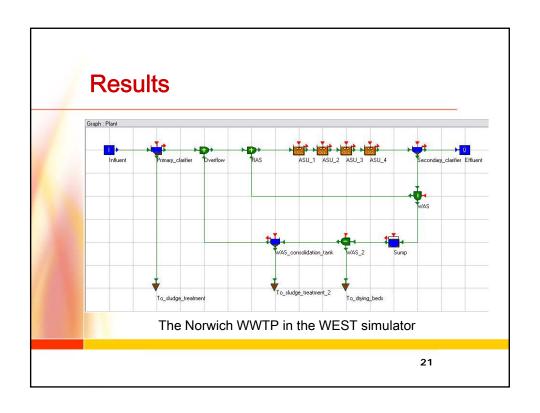
$$\begin{tabular}{ll} \textbf{Modelling} \\ \hline \bullet \textbf{Describe sorption:} \\ S_{Metal} + X_{TSS} & \rightarrow X_{Metal} \\ X_{Metal} & \rightarrow S_{Metal} + X_{TSS} \\ S_{Metal} + X_{TSS} & \downarrow & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow & \downarrow \\ S_{Metal} & \rightarrow & X_{Metal} & \downarrow \\ S_$$

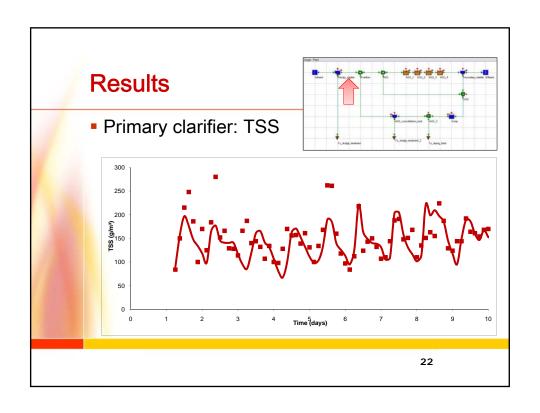
Modelling

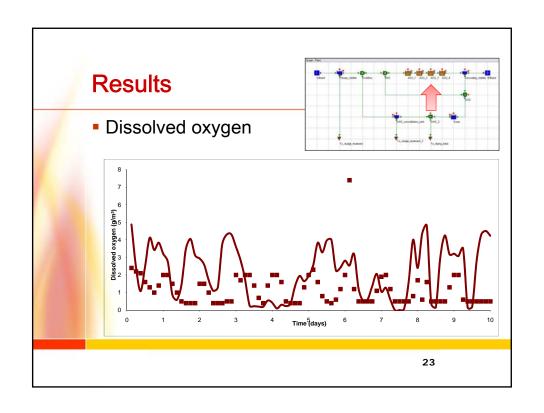
Importance of TSS:

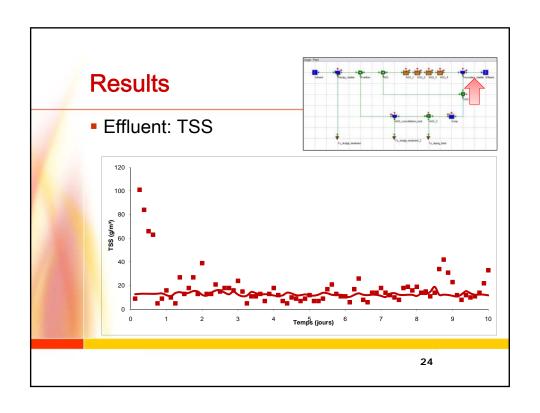
$$\frac{\text{d}S_{\text{Metal}}}{\text{d}t} = \frac{Q_{\text{in}}}{V} \Big(S_{\text{Metal,in}} - S_{\text{Metal,out}} \Big) - k \cdot \left(S_{\text{Metal}} \cdot \middle| X_{\text{TSS}} - \frac{X_{\text{Metal}}}{K_{D}} \right)$$

$$\frac{\text{dX}_{\text{Metal}}}{\text{dt}} = \frac{Q_{\text{in}}}{V} \Big(X_{\text{Metal,in}} - X_{\text{Metal,out}} \Big) + k \cdot \left(S_{\text{Metal}} \cdot X_{\text{TSS}} - \frac{X_{\text{Metal}}}{K_{D}} \right)$$

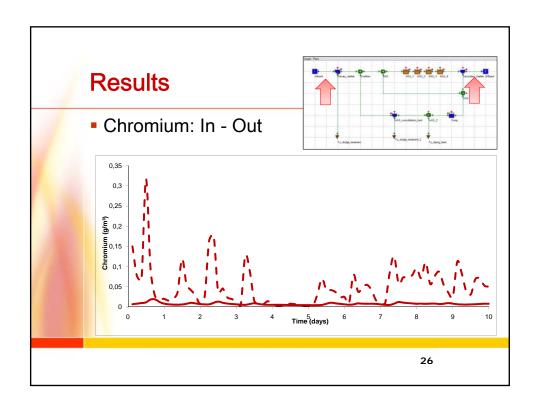

- We need good quality TSS simulations
- We need a model that describes growth/decay of biomass and the accumulation of org. matter

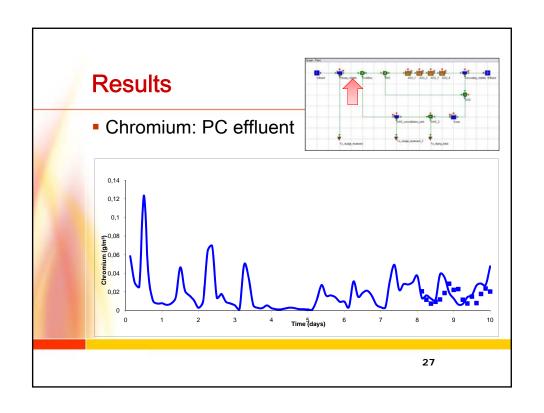

ASM1 (Activated Sludge Model No.1)

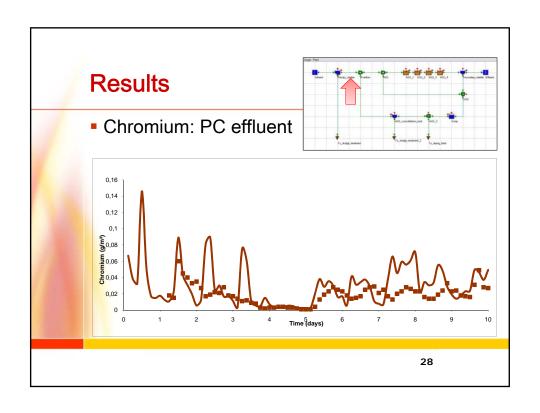

19

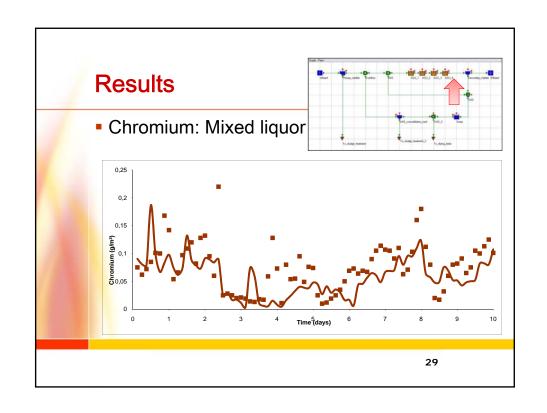

Overview

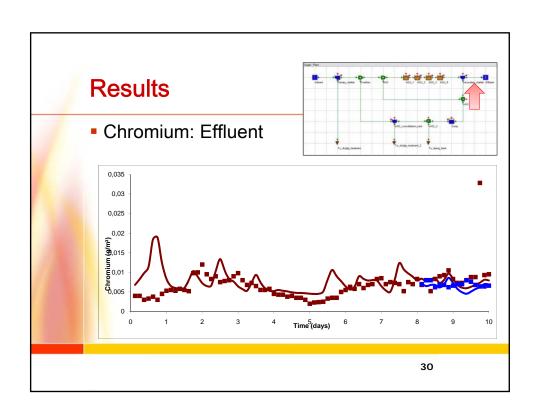
- Problem statement
- Objectives
- Materials and methods
- Modelling
- Results
- Conclusion

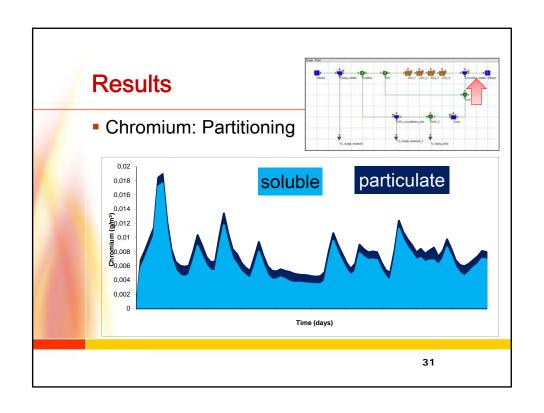


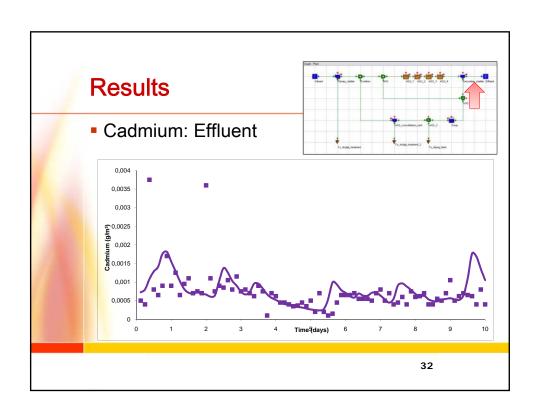







Studie	ed hea	avy me	etals				
Parameters	Units	Copper	Zinc	Lead	Cadmium	Chromium	Ni
k _{sorption}	L/mg.d	0.0002	0.0001	0.002	0.0002	0.0013	0.0
Log(K _D)	L/kg	3.7 (3.1 – 6.1)	5.1 (3.5 – 6.9)	4.6 (3.4 – 6.5)	4.6 (2.8 – 6.3)	4.4 (3.9 – 6.0)	(3.5
Removal	%	88.6	82.4	93.1	86.2	86.5	69





Overview

- Problem statement
- Objectives
- Materials and methods
- Modelling
- Results
- Conclusion

33

Conclusion

- Development of a model that deals with:
 - Traditional pollutants
 - Heavy metals

$$\mathbf{k}_{\mathsf{sorption}} \cdot \left(\mathbf{S}_{\mathsf{Metal}} \cdot \mathbf{X}_{\mathsf{TSS}} - \frac{\mathbf{X}_{\mathsf{Metal}}}{\mathbf{K}_{\mathsf{D}}} \right)$$

- Potential of the model
 - Optimising the design/operation of WWTPs

Conclusion

- Perspectives
 - ScorePP
 - Developed a model for micropollutants (runoff, sewer network, wwtp, river)
 - Pancanadian study
 - Efficacy of emerging contaminants removal
 - · Assess its impact on aquatic species

35

Conclusion

Acknowledgement

Canada Research Chair in Water Quality Modelling

- Peter Vanrolleghem
- Paul Lessard

