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Abstract 
Over the last two decades, Membrane Bioreactors (MBR) are increasingly used for wastewater 
treatment. Mathematical modelling of MBR systems has played a key role in order to better explain 
the effect of their peculiarities. Indeed, several MBR models have been presented in literature in 
order to improve the knowledge on MBR systems: biological models, hybrid models which include 
soluble microbial product (SMP) modelling, physical models able to describe the membrane fouling 
and integrated models which couple the hybrid models with the physical ones. 
However, among the existing MBR models only few integrated models have been developed which 
take into account the existing relationship between fouling and the biological processes. Also, with 
respect to modelling of biological phosphorus removal in MBR systems, due to the complexity of 
the process, practical use of the models is still limited. There is a vast knowledge (and consequently 
a vast amount of data) on nutrient removal for conventional activated sludge (CAS) systems but 
only limited information on phosphorus removal for MBRs. Moreover, calibration of these complex 
integrated models still remains the main bottleneck to their employment. 
The paper presents an integrated mathematical model able to simultaneously describe biological 
nutrient removal, the SMP formation/degradation and the physical removal of organics. The model 
has been calibrated by using data collected in a UCT-MBR pilot plant, built at the Palermo WWTP 
and fed with real wastewater, applying an innovative calibration protocol. The calibrated model 
provides acceptable correspondence with experimental data.  
 
Keywords 
ASM2d-SMP; MBR modelling; membrane fouling; model calibration; nitrogen phosphorus 
removal. 
 
Introduction 
In the last decade the use of membrane bioreactor (MBR) technology, for municipal as well as 
industrial wastewater, has increased significantly thanks to its technological advantages and 
decreasing membrane costs. At the same time, the need to improve the MBR process understanding, 
design and operation has grown. The peculiarities of MBR systems such as the solid liquid 
separation, the high suspended solids concentration and the high sludge retention times (SRT) 
induce big differences in the sludge properties and dynamic behaviour of MBR systems compared 
to the well-known conventional activated sludge (CAS) systems (Jiang et al., 2009; Di Trapani et 
al., 2011). These differences have been experimentally studied by several authors which 
fundamentally highlighted the greater stability of the autotrophic biomass activity in MBR systems 
than in CAS  (among others Munz et al., 2008). Moreover, several MBR models have been 
presented in literature in order to better explain the effect of the peculiarities of the MBR. In 
particular, as discussed by Fenu et al. (2010), the activated sludge models (ASMs), originally 
developed for CAS systems, have been applied in their original form or adapted in order to simulate 
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MBR systems (among others, Jiang et al., 2008; Spérandio and Espinosa, 2008; Mannina et al., 
2010). MBR modelling literature gives particular attention to membrane fouling by introducing 
“integrated” models (Ng and Kim, 2007) which basically couple the biological model (including the 
soluble microbial products (SMPs) formation/degradation processes according to the “hybrid” 
configuration models) with the physical models (Lee et al., 2002; Di Bella et al., 2008; Zarragoitia-
González et al., 2008). Among the published integrated models only few models take into account 
the existing relationship between the removal effect of the reversible fouling (cake layer) and the 
biological processes. Among these, the model proposed by Di Bella et al. (2008) is able to describe, 
for a single MBR reactor, the effect of the cake layer on COD removal according to the deep bed 
theory (Kuberkar and Davis, 2000).  
Nevertheless, integrated MBR models able to describe the biological nutrient removal (BNR) 
processes as well as SMP formation/degradation and physical separations are not yet fully available. 
Indeed, in the wide MBR modelling literature overview provided by Fenu et al. (2010) the need for 
further studies on MBR phosphorus removal and on SMPs transport through the membrane is 
underlined. In fact, knowledge concerning the influence of the MBR sludge properties on biological 
phosphorus removal process, though studied by different authors, is still limited (among others 
Monclùs et al., 2010; Zhang et al., 2009). Moreover, the existing integrated models, which 
introduce new processes (e.g. SMP formation/degradation and physical processes), variables and 
parameters, are complex and generally characterized by several parameters that need to be 
quantified in view of the frequent lack of data. The calibration of these models, still remains the 
weakest link in their employment (Hauduc et al., 2009).  
This paper proposes an integrated mathematical model able to describe nitrification, denitrification, 
biological phosphorus removal and SMP formation/degradation which occur in a UCT-MBR 
system according to Jiang et al. (2008) and the influence of the cake layer in the COD removal 
according to Di Bella et al. (2008). An innovative calibration protocol proposed by Mannina et al. 
(in press) is also applied to estimate the model parameter values by using the data collected in an 
UCT-MBR pilot plant fed with real wastewater.  
 
Methods 
Model description 
The MBR model is divided into two sub-models: a biological and a physical sub-model. It involves 
19 biological state variables and 79 parameters (kinetics, stoichiometry, physical parameters and 
fractionation coefficients). The proposed integrated MBR model couples the ASM2d-SMP model 
first introduced by Jiang et al. (2008) with a physical sub-model derived from Mannina et al. (2010) 
and Di Bella et al. (2008). 
The biological sub-model is a modified version of ASM2d (Jiang et al., 2008) and takes into 
account two new state variables, SUAP (soluble utilization associated product) and SBAP (soluble 
biomass associated product), and six new processes (anaerobic, aerobic and anoxic hydrolysis of 
both UAP and BAP). The sum of SUAP and SBAP is equal to the modelled SMP. According to Jiang 
et al. (2008) SUAP and SBAP are both defined to have a size < 0.45 µm, to be produced in the system 
and to be biodegradable.  
The assumptions, processes and variables of ASM2d are still valid except for the process (and 
related variables) of phosphorus precipitation that has been neglected; for the variables and process 
descriptions refer to ASM2d (Henze et al., 2000). The SBAP production is described to be 
proportional to the biomass decay and is characterised by the stoichiometric parameter fBAP 
(fraction of BAP generated per biomass decayed). The SBAP reduction which is due to aerobic, 
anoxic and anaerobic hydrolysis processes following saturation kinetics is characterised by the 
hydrolysis rate coefficient for SBAP (kH,BAP). The SUAP production and degradation are similarly 
described by introducing the coefficients fUAP (fraction of UAP generated in biomass decay) and 
kH,BAP.  
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The total COD (CODTOT), total soluble COD (CODSOL), total phosphorus (TP), total nitrogen (TN) 
and mixed liquor suspended solid (MLSS) are described as follows, where the coefficients in the 
Eqs.1-5 are defined according to ASM2d:   

PHAPAOAUTHSIBAPUAPIAFTOT XXXXXXSSSSSCOD ++++++++++=      (1) 

BAPUAPIAFSOL SSSSSCOD ++++=          (2) 
( )PAOAUTHPBMIPXISPXSIPSIFPSFPO XXXiXiXiSiSiSTP ++⋅+⋅+⋅++⋅+= 4     (3) 

( )PAOAUTHNBMINXINXSINSIFNSFNHNO XXXiXiXiSiSiSSTN ++⋅+⋅+⋅++⋅++= 43    (4) 
( ) PHAXPHATSSPPXPPTSSPAOAUTHBMTSSSXSTSSIXITSS XiXiXXXiXiXiMLSS ,,,,, +⋅+++⋅+⋅+⋅=  (5) 

The physical sub-model is derived by an integrated MBR model developed in previous studies (Di 
Bella et al., 2008; Mannina et al., 2010). The model describes the cake layer formation during the 
suction and backwashing phases and the partial COD removal throughout the cake layer, taking into 
account the reversible fouling of the membrane. In particular, according to the model proposed by 
Li and Wang (2006) and the application proposed by Di Bella et al. (2008) the rate of sludge 
attachment and detachment on the membrane surface are modelled continuously throughout the 
suction backwashing phase, making it possible to evaluate the solid mass deposited on the 
membrane surface and the cake layer thickness, δ(t) at any time (see Di Bella et al., 2008). 
Subsequently, by applying the deep-bed theory (Bai and Tien, 2000; Kuberkar and Davis, 2000) 
with the approach of Jang et al. (2006) the physical sub-model is able to describe the COD profile 
across the biological membrane represented by the cake layer. A fraction of particles is retained 
inside the cake layer and the CODTOT on the cake layer outer surface (which represents the output 
of the biological model) is reduced across the membrane before the physical filtration. Finally, the 
model describes the total physical and biological contribution to CODTOT removal which depends 
on the fraction of particles removed by the bed (according to the deep bed theory) and on the 
fraction of particles retained by the physical membrane. The link between the two sub-models is 
represented by the MLSS concentration in the MBR reactor.  
Data collected during the sampling campaign were used to compose a continuous input series 
generated from the discrete input measured data by employing a Fourier series (Mannina et al., in 
press).  
 
Pilot plant and sampling campaign description 
The model was applied and calibrated to a UCT-MBR pilot plant, Figure 1, located at the Acqua dei 
Corsari (Palermo) wastewater treatment plant (WWTP). It consisted of three reactors in series, 
anaerobic (mean volume 72 L), anoxic (mean volume 165 L) and aerobic (mean volume 327 L) 
respectively, followed by an aerobic container (mean volume 52 L) where two submerged hollow 
fibre membrane modules (Zenon Zeeweed, ZW 10) were installed. The presence of the oxygen 
depletion reactor (ODR) ensures anoxic conditions in the second reactor despite the intensive 
aeration in the aerobic tank. Each membrane module was characterized by a pore size of 0.04 μm 
and a nominal surface of 0.93 m2. The pilot plant was fed with 40 L/h (QFEED) of municipal 
wastewater. The permeate was extracted using an ad-hoc permeate extraction pump (for each 
membrane) by imposing an average flux of 42 Lm-2h-1 on the membrane surface and a maximum 
depression (which occurs during the extraction period) of -0.50 bar. The membranes were 
periodically subjected to physical and chemical cleaning. Chemical cleaning was conducted by 
using a solution of 2 g/L of citric acid in order to reduce the trans-membrane pressure.  The plant 
was operated for 165 days.  Until day 76 it was operated with complete sludge retention while after 
day 76, the sludge was regularly withdrawn, maintaining the sludge age near 37 days. The average 
mixed liquor suspended solids (MLSS) concentrations ranged from 3 to 6.5 gTSS/l with an average 
percentage of volatile fraction of 70% and an average value of the Food/Microorganism ratio (F/M) 
equal to 0.13 kgTCOD·kgVSS−1 d−1. 
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During the entire period the composite influent wastewater (section 0), the grab mixed liquor in 
each tank (sections 1-4), the mixed liquor in ODR (section 6) and the permeate (section 5) were 
sampled three times per week and analysed for total and volatile suspended solids (TSS and VSS), 
total and soluble COD, NH4-N, NO2-N, NO3-N, NTOT, PTOT (APHA, 1998). Moreover, daily 
measurements in each section were conducted for dissolved oxygen (DO), pH and temperature (T) 
using a handheld Multi-meter 340i (WTW). A physical-chemical characterization of the influent 
was performed analysing COD, NH4-N, NO2-N, NO3-N, NTOT and PTOT from influent grab samples 
withdrawn at hourly intervals during 24 hours. Further details about the pilot plant and the sampling 
campaign can be found in literature (Di Trapani et al., 2011).  
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Figure 1. Schematic overview of the UCT-MBR pilot plant 
 
Sensitivity analysis and model calibration 
Sensitivity analysis represents a very powerful tool, as it is able to provide information about how 
the variation in the output of the model can be apportioned to the variation of the input factors 
(Saltelli, 2000). In the case of an over-parameterised model it may be performed in order to select 
the region in the space of input factors (i.e. parameters) on which to focus the attention during the 
model calibration (Saltelli, 2004). In this work a previous screening of the most influential kinetic, 
stoichiometric and fractionation model parameters by means of a preliminary global sensitivity 
analysis (GSA) has been performed (Cosenza et al., 2011). In particular, the results of the 
application of the Standardized Regression Coefficients (SRC) method have been used. The SRC 
method consists of running a Monte Carlo simulation (with random sampling of input factors) and 
performing a multivariate linear regression between the model output and the input factors. The 
SRC’s (βi), which represent the standardised regression slopes of the regression, are valid measures 
of sensitivity when, as suggested by Saltelli (2004), the coefficient of determination R2 is greater 
than 0.7.. After a preliminary trial and error calibration, the parameter values have been estimated 
by applying an innovative calibration protocol developed in previous studies (Mannina et al., in 
press). This protocol employs a novel step-wise Monte Carlo based calibration of the subset of 
influential parameters. The speciality of this procedure is that different subsets of model parameters 
corresponding to sub-groups of model outputs are differentiated. In this way the combination of 
issues connected to the model complexity, the lack of data and the large number of parameters 
involved are tackled. The calibration protocol simplifies the problem of finding the optimal 
parameter set by splitting the estimation task in steps. A preliminary global sensitivity analysis is 
carried out in order to identify the most influential model parameters to be calibrated for each model 
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output sub-group. The sub-groups of model outputs and corresponding influential parameters to be 
calibrated are then selected and the iterative step-wise procedure is applied considering a specific 
calibration order (defined either according to the modeller’s experience or in an objective way) of 
these output sub-groups.  
In order to quantify how the variation of the influential model parameters influences the model 
output (Y) and which set represents the best calibrated set, the expression for the likelihood (Eq. 6) 
and global model efficiency (Eq. 7)  used by Mannina et al. (in press) were used: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= −

Oj

OjMj
ji YL 2

2

exp
σ
σ

θ                      (6) 

where θI, represents the ith set of (randomly generated) model parameters, σ2
Mj-Oj  represents the 

sum of squared errors between model output (Mj,i) and observation (Oj,i) of the jth variable, while 
σ2

Oj is the sum of squared errors between the observations (Oj,i) and the average value of the 
observations ( jO ) for the period under consideration. 

( )∑=
n

j
jiji YLE θα                   (7) 

where Ei represents the weighted sum of the likelihood measures of the n model outputs computed 
on the ith selected parameter set (θi) and αj is a normalizing constant that represents the weight of 
the jth model output. 
All algorithms were coded in Fortran. Simulations were performed with an ASUS AMD Athlon 64 
X2 Dual Core Processor 4000+, 2.1 GHz, with 2GB ram memory. One model simulation requires 
approximately 3 minutes. 
 
Results and discussion 
Preliminary Sensitivity analysis 
The SRC method was applied considering the broadest variation range for each model parameter 
found in the relevant literature (among others Hauduc et al., 2011; Brun et al., 2002; Weijers and 
Vanrolleghem, 1997). A parameter matrix (800×79) was generated using Latin hypercube sampling 
(LHS). Monte Carlo simulation was performed on the sampled parameter values. As in Sin et al. 
(2011), abs(βi) with values above 0.1 were selected as being influential. For each of the chosen pilot 
plant sections (1-5) and for each of the 21 model state variables, a set of influential model 
parameters has been selected by applying the SRC method. In particular, for each chosen plant 
section, the time-averaged state variables were considered. Therefore, 21 sensitivity coefficients 
have been calculated for each model parameter. Table 2 summarizes the results of the sensitivity 
analysis for each sub-group of model outputs.  
 
Table 2. Synthesis on the results of the preliminary sensitivity analysis: sub-groups of model outputs; model outputs 
taken into account during the analysis, calibration order, influential model parameters for each sub-group and performed 
Monte Carlo (MC) runs for the model calibration 

Sub-group Model output Calibration order Influential parameters 
sub-group 

MC runs 

P SPO,1, SPO,2, SPO,3, 
SPO,5  

I 
kH, ηFE, KNO3, μH, bH, 

qPHA, qPP, μPAO, bPAO, YH, 
fXI, YPAO, iP,XI, iP,XS, iP,BM 

9570 

N 
SNH4,1 , SNO3,1, SNH4,2, 
SNO3,2, SNH4,3, SNO3,3, 
TN,5, SNH4,5, SNO3,5 

II 
kH, KO, μH, ηNO3,H, bH, 

KNH,H, μAUT, YH, fXI, FSA, f, 
iN,XI, iN,XS 

3444 

COD 
CODTOT,1 , CODTOT,2, 
CODTOT,3, CODSOL,3, 

CODTOT,5 
III kH, μH, bH, KNH,H, μAUT, 

YH, β, f 3379 

MLSS MLSS,1, MLSS,2, 
MLSS,3 IV kH, μH, fXI 3502 
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In particular, the MLSS, N, COD and P sub-groups of model outputs were considered; a model 
parameter is influential for a sub-group if it is classified as influential for at least one of the model 
outputs of that sub-group.  Globally, 24 model parameters were classified as being influential. A 
substantial reduction (>65%) in the number of model parameters to calibrate was therefore 
accomplished. The model parameters classified as being influential present good consistency with 
the relevant processes occurring in each plant section. For example, one of the most influential 
parameters for SPO,1 (orthophosphate in section 1) was qPHA (rate constant for SA uptake rate); this 
parameter is representative of the phosphorus release process which occurs in anaerobic conditions. 
The positive sign of the resulting value of βi (βi=0.32) for qPHA indicates a positive effect on the 
SPO,1 value. Another example is the influence of the parameters μH (maximum growth rate of 
heterotrophic organisms) and YH (yield coefficient for heterotrophic organisms growth) on the 
model output SNO3,2 with βi respectively equal to -0.32 and 0.22. 
Once the influential model parameters have been selected, for each sub-group, the calibration order 
was defined (Table 2). For each selected model output the sum of the absolute values of βi for the 
influential model parameters has been computed first. Thereafter, the average sum of the βi of each 
sub-group (βM) has been calculated. The order of the different calibration sub-groups has been 
established by ranking the calibration sub-group with respect to βM. The model output sub-groups 
were ranked on the basis of the βM values. The first calibration order has been assigned to the sub-
group which presents the highest βM value. 
 
Calibration 
Even though the calibration protocol doesn’t include a preliminary manual calibration, the 
computational time of the automatic calibration, can be reduced by first performing a calibration by 
means of the trial and error method: according to the modeller’s experience the default values 
(taken from literature) of some parameters have been changed in order to improve the simulated 
versus measured concentration profiles of the model outputs taken into account. The a priori  set of 
model parameters is thus obtained from this trial and error calibration (Table 3). This set is equal to 
the default one except for the parameters fXI, fBAP, iTSS,XI, iTSS,XS, iTSS,BM and bAUT which respectively 
represent the fraction of XI generated in biomass decay, the fraction of BAP generated in biomass 
decay, the conversion factor XI in TSS, the conversion factor XS in TSS, the conversion factor 
biomass in TSS and the decay rate coefficient for autotrophic organisms. The parameters fXI 
(default=0.1, a priori=0.05), fBAP (default=0.022, a priori=0.007), iTSS,XI (default=0.75, a 
priori=0.7875), iTSS,XS (default=0.75, a priori=0.7875), iTSS,BM (default=0.9, a priori=0.945) were 
substantially changed in order to improve the fit between the simulated and measured MLSS values; 
the value of bAUT (default=0.15 d-1, a priori=0.08 d-1) was reduced in order to improve the 
description of the nitrification process. The bAUT value is in agreement with values found in 
literature for MBR systems (Di Trapani et al., 2011; Lubello et al., 2009). 
Then, the influential model parameters of Table 2 were calibrated by applying the calibration 
protocol proposed by Mannina et al. (in press), based on the Generalized Likelihood Uncertainty 
Estimation (GLUE) methodology (Beven & Binley 1992),  considering the model outputs of Table 
2. For each sub-group, starting from the first sub-group (P) up till the last one (MLSS), several 
Monte Carlo runs were performed, each time  varying only the influential parameters for this sub-
group (non influential model parameters are maintained equal to their a priori value). The required 
number of MC runs (see Table 2) was different from sub-group to sub-group. Similarly to Mannina 
et al. (in press), this study was carried out by analyzing the model efficiency variations increasing 
the sample dimension from 100 to 10000 Monte Carlo simulations.  The same parameter ranges as 
used in the preliminary sensitivity analysis were used (see Table 3) and no correlation between 
parameters was assumed. 
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For each run, simulated outputs were compared with measured data computing the model output 
efficiency according to Equation 6. For each sub-group the calibrated set of parameters, 
corresponding to the maximum value of the global model efficiency (Eq. 7) was selected. The 
global model efficiency considers the model outputs of the sub-group under study and all previous 
sub-groups in the calibration order. The calibrated parameter values are summarized in Table 3. 
Most of them are generally in agreement with literature values (among others, Jiang et al., 2008; 
Fenu et al., 2010; Hauduc et al., 2011; Henze et al., 2000). However, some values of the calibrated 
model parameters require further discussion. The calibrated value of μAUT (1.18 d-1) is different 
from the value presented by Jiang (2007) who, applying the ASM2d-SMP model, obtained a value 
equal to 0.6 d-1

.  The calibrated values of YH and bH, respectively equal to 0.39 gXH/gXS and 0.58 d1, 
correspond with values obtained independently by means of respirometric techniques (see Di 
Trapani et al., 2011).  
The calibrated value of qpp (2.34 gXPP gXPAO

-1 d-1) is higher than the value obtained by Jiang (2007)  
(qpp =1.1 gXPP gXPAO

-1 d-1). This parameter values takes into account the storage of poly-phosphate 
that in the analyzed plant was higher. Indeed, the orthophosphate assimilation took play not only in 
the aerobic tank but also in the anoxic one. Furthermore this parameter value takes into account the 
increasing of storage rate due to the K2PO4 dosing. 
The model calibration results showed an acceptable correspondence with experimental data (final 
model efficiency equal to 0.36) demonstrating that the calibrated model was able to describe the 
behaviour of the pilot plant in an acceptable way. The satisfactory responses of the calibrated model 
demonstrate the ability of the adopted calibration procedure to be used also for very complex 
models, by taking into account the results of a global instead of a local sensitivity analysis. 
In Figure 2, for example, a good prediction accuracy with respect to the long-term behaviour of 
some model outputs and related efficiencies (ESPO,1, ESNH4,2, EMLSS,2 and ECODTOT,5) are observed.  
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Figure 2 Simulated versus measured values for orthophosphate in the anaerobic tank (SPO,1) (a), ammonia in the anoxic 
tank (SNH4,2) (b), mixed liquor suspended solids in the aerobic tank (MLSS,3) (c) and total COD in the permeate tank 
(CODTOT,5) (d). 
 
Important to note is that the model is able to reproduce the effect, in terms of SPO,1 concentration 
(Figure 2(a)), of the influent KH2PO4 dosing (performed from day 117 to 127 in order to increase 
the influent P-PO4 concentration). In terms of MLSS concentration (see Figure 2(c)) the model 
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over-predicts the simulated values from day 45 to day  90. Such results could be due to the model’s 
incapacity to reproduce the stress condition of the biomass related to the frequent energy 
interruption in the pilot plant during this period. The same results which influence the mixed liquor 
CODTOT have been found in all plant sections. As suggested by Lubello et al. (2009) such results 
could also be related to the fact that, especially in high sludge retention time (SRT) conditions, the 
fraction of particulates produced by the endogenous decay of biomass consists of new organic 
material. Regarding the CODTOT,5 the good agreement between observed and simulated values is 
shown in Figure 2 (d), with the exception of the last period for which a modest mismatch is evident; 
the model is also able to reproduce the effect of the physical or chemical membrane cleaning (see 
the discontinuity around day 60 in Figure 2 (d)). In Figure 3 the simulated SUAP and SBAP profiles in 
the aerobic tank are shown; it is consistent with Jiang (2007) that an increase of SRT generates an 
increase in SUAP until the beginning of sludge withdrawing.  
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Figure 3 Simulated SUAP and SBAP profiles in the aerobic tank. 
 
Globally, the best fit between simulated and measured data in terms of efficiency was obtained for 
SPO,1 and SPO,2  with efficiency values equal to 0.52 and 0.63 respectively. The global model 
efficiency after applying the calibration protocol was equal to 0.36 (computed as weighted sum 
among all 21 variables taken into account). This value has considerably increased compared to the 
value of 0.1 obtained by using the a priori values of the parameters obtained with the manual 
calibration. The results have undoubtedly been influenced by the data quality. Data collected during 
the sampling campaign were strongly influenced by unexpected events such as energy interruptions 
or non municipal discharges in the municipal sewer system of Palermo.  
 
Conclusions 
An integrated mathematical model able to describe the BNR processes and the cake layer 
contribution to the COD removal was presented. The model was calibrated by using an innovative 
calibration protocol by performing a preliminary sensitivity analysis to identify the most influential 
model parameters by means of the SRC method. By performing the global sensitivity analysis 24 
influential model parameters were selected substantially reducing (>65%) the number of model 
parameters to calibrate and showing a good consistency between influential parameters and 
involved processes. Despite the model complexity the protocol provided acceptable results by 
applying a global sensitivity analysis, rarely used in the field of wastewater models, for the 
influential parameters screening.  The simulated values of SUAP and SBAP were not used to calibrate 
the model due to a lack of measured values.  However, the low modelled values of SMP 
concentration were consistent with the reversible membrane fouling noticed during the pilot plant 
operation. The integrated model represents a useful tool to improve MBR plant design and to pre-
emptively evaluate the SMP concentration in an MBR system.  
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