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Abstract 

A total of 31 quantitative quality criteria to compare measured with simulated time series in 
environmental modelling are critically reviewed. They are grouped using two classification 

schemes. A methodology to evaluate and compare the criteria is proposed and tested on a case 

study. This methodology includes a two stage cluster analysis using Kendall rank correlation and 

dendograms to identify independent quality criteria. Independent quality criteria allow for a 

comprehensive model assessment and are a prerequisite for multi-objective parameter estimation.  
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ABBREVIATIONS 
AME: Absolute Maximum Error 

ASM: Activated Sludge Model 

CE: Coefficient of Efficiency  

CE1,2: Nash-Sutcliffe 
COD: Chemical Oxygen Demand 

CrBal: Balance Criterion 

HRT: Hydraulic Retention Time 

IA: Index of Agreement 

MAE: Mean Absolute Error 

MAER: Relative Mean Absolute Error 

MAPE: Mean Absolute Percent Error 

MARE: Mean Absolute Relative Error 

MdAPE: Median Absolute Percent Error 

ME: Mean Error 

MPE: Mean Percent Error 

MRE: Mean Relative Error 
MSDE: Mean Square Derivative Error 

MSE: Mean Square Error 

MSLE: Mean Square Logarithm Error 

MSRE: Mean Square Relative Error 

MSSE: Mean Square Sorted Errors 

NSC: Number of Sign Change 

PBIAS: Percent Bias  
PDIFF: Peak Difference 

PEP: Percent Error In Peak 

PI: Coefficient of Persistance 

PE: Population Equivalent 

RAE: Relative Absolute Error 

RMSE: Root Mean Square Error 

RSR: RMSE-observation standard deviation ratio 

RVE: Relative Volume Error 

SRT: Sludge Retention Time 

TKN: Total Kjeldhal Nitrogen 

TMC: Total Mass Controller 

TSS: Total Suspended Solids 
U²: Theil's Inequality Coefficient 

WWT: Wastewater Treatment 

WWTP: Wastewater Treatment Plant 

 

INTRODUCTION 

In wastewater treatment (WWT) modelling, the evaluation of model quality is often based on 

qualitative comparisons between simulation results and observed data. Although such visual 

evaluation is useful, it does not provide an objective assessment of the quality of a calibration 

parameter set. Moreover, it cannot be used in an automatic calibration procedure. 

Environmental sciences, hydrology in particular, widely use mathematical comparisons of predicted 

and observed values (Dawson et al., 2007). In WWT several target constituents are usually 

considered simultaneously during model calibration (sludge production, total suspended solids 

(TSS), chemical oxygen demand (COD), nitrogen and phosphorus in the effluent …). Although a 
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review of quality criteria is presented in Dochain and Vanrolleghem (2001), quantitative criteria are 

rarely determined in this field (Petersen et al., 2002; Ahnert et al., 2007; Sin et al., 2008).  

In order to facilitate the adoption of quantitative quality criteria for model evaluation and automated 

calibration, a literature review was undertaken covering a number of water-related disciplines 

(WWT, catchment hydrology, urban hydrology, climate sciences, environmental sciences…). Then, 

a methodology was set up to investigate the use of those criteria for WWT modelling, especially in 

view of determining suitable parameter values in an automated calibration procedure. The 

procedure is applied to a case study, and the quality criteria obtained are analysed. In particular the 

correlations between criteria are evaluated, to identify independent criteria. The use of independent 

criteria allows making better use of the available information in the data.  

 

QUANTITATIVE QUALITY CRITERIA USED IN ENVIRONMENTAL SCIENCES 

General methods to compare observed and predicted data 

Depending on the modelling objectives, the goodness-of-fit of a model can be defined as the 

capability of the model to capture one or several characteristics of the observed data: mean, timing 

and magnitude of peaks or typical periodical variations (diurnal, weekly, seasonal…). For example, 

if a specific effluent limit of a plant is based on a monthly average it makes no sense to evaluate the 

accuracy of the fit of each single peak. However, if peak effluent limits have to be met, a criterion 

evaluating the fit of peaks should be used. Thus, to characterise the goodness-of-fit of the model, 

different quality criteria may be needed. These criteria vary in the way they are computed from the 

observed and predicted data: 

 Criteria can be averaged over the number of data on which they were computed, which allows 

comparing results obtained on datasets of different sizes; 

 Absolute criteria are expressed in the same units as the variables of interest; 

 Relative criteria (divided by observed or predicted values or by the variance) are dimensionless; 

which allows to compare across different state variables; 

 Comparisons of residuals obtained with simple models are used in several criteria to define the 

improvement of using the model over a simple model, such as a model defined as the mean of the 

observed values or the previous observed value (see e.g. Seibert, 2001). The model to be 

compared with can also be a model describing typical variations (e.g. daily mean time-series 

calculated from historical time-series), or a seasonal mean value (Legates and McCabe, 1999). 

Other arithmetic operations can be applied to emphasise small or large errors or errors on specific 

parts of the time series: 

 Partitioning the dataset according to different measurement magnitudes (e.g.: low, intermediate 

and high flows) and computing the quality criteria on each of these subsets (Perrin et al., 2006; 

Moriasi et al., 2007), 

 emphasising small errors or low magnitude values: a power transformation of the data with an 

exponent lower than 1 (square root…) or a logarithmic transformation can be used, 

 emphasising large errors or high magnitudes values: a power transformation of the data with 

an exponent larger than 1 or an exponential transformation can be used, 

 avoiding error compensation: absolute values and even power values will avoid compensation 

of negative and positive errors when summing them. 

These arithmetic operations are used to modify the general criteria to extract the required 

information, given a certain objective, e.g. give more importance towards errors at low magnitude, 

maximum errors or errors on peaks. It is important to note that all criteria discussed in this review 

are based on sums. Consequently, in case of datasets with variable time steps, the criteria will 

emphasise errors on more frequently sampled periods. A solution to overcome this problem would 

be to use weighted criteria inversely proportional to frequency (an isolated point will have a higher 

weight) (Willmott et al., 1985). 
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Review and classification of quantitative criteria used in environmental sciences 

The thirty-one quantitative quality criteria selected in the literature review are described in 

Appendix 1. They were grouped according to two classification systems (classes 1-6 and 

characteristics i-vi). The first classification scheme is inspired by Dawson et al. (2007) and groups 

the criteria into 6 main classes:  

1. Single event statistics: In case modelling objectives require accurate simulation of events (e.g.: 

handle storm flows, toxic peaks), criteria are needed to characterise the goodness-of-fit of the 

model for this event. The single event statistics peak difference (Gupta et al., 1998) and percent 

error in peak (Dawson et al., 2007) aim at characterising the difference between the maximum 

observed and the maximum modelled value. 

2. Absolute criteria from residuals: The absolute criteria are based on the 

sum of residuals (difference between observed Oi and predicted Pi values 

respectively at time step i), generally averaged by the number of data, n. A 

low value of this criterion means a good agreement between observation 

and simulation (with γ an exponent). 

3. Residuals relative to observed values: At each time step, the error is 

related to the corresponding observed or modelled value. A low value of 

this criterion means a good agreement between observation and 

simulation. 

4. Total residuals relative to total observed values: For the following 

criteria, the sum of errors is related to the sum of observed values, without 

any correspondence in time step. A low value of this criterion means a 

good agreement between observation and simulation. 

5. Agreement between distributional statistics of observed and modelled data: These criteria 

are not based on error comparison, but on a comparison between cumulative modelled and 

observed data. These criteria originate from hydrology and aim at verifying whether the total 

water volume has been reproduced by summing the flows. In the wastewater field these criteria 

can be relevant for influent and effluent pollutant loads by summing the fluxes. 

6. Comparison of residuals with reference values and with other 

models: These criteria compare the residuals with residuals obtained 

with a reference model P
~

, such as a model describing the mean value 

( OP
~

i  ) or the previous value ( 1 ii OP
~

) (with α an exponent).  

In the second classification system the 31 quality criteria are classified along 6 main different 

characteristics of the adjustment of the predicted values to the observed dataset: i) criteria 

evaluating the mean error, ii) criteria evaluating the bias, iii) criteria that emphasise large errors, iv) 

criteria that emphasise small errors, v) criteria evaluating peak magnitudes and vi) criteria 

evaluating event dynamics (Table 1).  
 

Table 1. List of criteria per characteristic (The quality criteria are described in detail in Appendix 1)  

Characteristics Quality criteria  

Mean error 
MAPE, TMC, RVE, CE1,2, CE1/2,2, RSR, U2, MSE, RMSE, MARE, MSRE, MdAPE, MAE, 

MRE, MAER 

Bias PBIAS, ME, MPE, RAE, NSC, CrBal, MSSE, PI 

Large errors AME, R4MS4E, IA 

Small errors MSLE, CELN,2 

Peak magnitude PDIFF, PEP 

Chronology of events MSDE 

 

METHOD  

Automated criteria evaluation 

The proposed evaluation procedure is summarised in Figure 1. The main steps and software used at 

each step are specified. Each step is described in the following paragraphs for the case study. 
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Figure 1. General framework of the automated criteria evaluation. In this case study, the number of simulations is 

K=5000 and the number of quality criteria is C=31. The parameter sets database is presented in Hauduc et al. (2011). 

 

Description of the wastewater treatment plant (WWTP) used as case study 

The procedure was tested using quality-controlled data (Rieger et al., In Preparation) from a 

250.000 population equivalent (PE) municipal WWTP located in France. It is configured in two 

parallel lanes that operate under similar conditions, each lane containing a plug-flow tank with a 

pre-denitrification zone. Aeration is controlled by a timer. Chemical phosphate removal is carried 

out with addition of alum. The sludge retention time (SRT) is 27 days and the hydraulic retention 

time (HRT) 8.8 hours.  

The simulation period consists of 84 consecutive days, from February 15 to May 9 2009. This 

period was chosen because the added alum quantity was monitored during this time, allowing an 

estimation of the chemical sludge production by phosphorous precipitation. An advantage of this 

period is that it also includes high dynamics and varying operating conditions. The first half of this 

period exhibits typical operating conditions. However, on day 48, all aerators broke down for 3 

days. Then from day 51 to 68 the aerators were running permanently. These varying operating 

conditions provide dynamic conditions that provide more information which improves the 

identification of model parameters. The target constituents (total suspended solids (TSS) in the 

biological reactor, TSS, COD, total Kjeldahl nitrogen (TKN), nitrate and ammonia in the effluent 

are measured daily as flow-proportional daily averages. 

Activated Sludge Model n°1 (ASM1) (Henze et al., 2000) was chosen to model this WWTP as 

there is no biological phosphorus removal and because it is the simplest and more commonly used 

model, for which parameter value ranges are known (Hauduc et al., 2009; Hauduc et al., 2011). 

However, a modified ASM1 that includes a different heterotrophic growth yield under anoxic 

conditions was preferred (Orhon et al., 1996). 

 

Implementation of the configuration 

The configuration was implemented in WEST (Figure 2) (Vanhooren et al., 2003). The two lanes 

were modelled as a single one with double volumes. Considering the U-shape of the aerobic tank, it 

was represented by an anoxic tank and three aerobic tanks, each with the same volume. As there is 

no sludge accumulation in the secondary settler, a point-settler model was chosen. The target 

constituents were sampled at the output through a modelled flow-proportional sampler so as to 

directly obtain flow-proportional daily averages as model outputs.  

Biokinetic parameter ranges are available from a database of modelling projects (Hauduc et al., 

2011). However, no ranges are yet available for the fraction of non-settleable particulates. 

Furthermore, fractionation parameters were included in the Latin Hypercube sampling to consider 

the uncertainty on these parameters due to the lack of reliable fractionation experiments on the plant 

influent. To determine reasonable ranges for these parameters, a pre-calibration step was carried out 
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using Cemagref's default parameters (Choubert et al., 2009) (Table 2). The fractionation of the 

influent and the fraction of non-settleable particulates were roughly adjusted, starting respectively 

from usual values (Gillot and Choubert, 2010) and default WEST value (fns=0.005), to (visually) fit 

the sludge production and the mean effluent output data (Table 2). Parameter ranges were then 

defined as ±20% around these fractionation values and ±60% around the fraction of non-settleable 

particulates determined in the pre-calibration step. To keep a total COD and nitrogen fraction of 

100%, XCB and XCB,N were chosen to be the residual of the other fractions. Under these variations, 

XCB varied from 42.4% to 61.8% while XCB,N varied from 73.8% to 82.4% (Table 2). 

 
Figure 2. Layout of the WWTP in WEST. A combination of sensors and samplers for each target constituent provides 

daily mean flow-proportional values directly from the simulation. 

 

Parameter sets sampling 

The proposed procedure to evaluate quality criteria is based on the automated calibration procedure 

set up by Sin et al. (2008) and modified by Hauduc (2010). Monte Carlo simulations were carried 

out based on 5000 parameter sets sampled in a Latin hypercube, using R (http://www.r-

project.org/). As presented in Table 2, all ASM1 parameters, except the temperature adjustment 

coefficients were considered. As no correlation between parameters could be identified in the 

modelling projects database (Hauduc et al., 2011), the parameters are considered independent.  

 

Simulations 

The simulations were carried out in Tornado (Claeys et al., 2006), the generic kernel of WEST. 

To ensure correct initial steady-state conditions for the 84 days of dynamic simulation of each 

parameter set, 100 days (> 3 * SRT) were first simulated under pseudo steady-state conditions 

(alternating aeration periods, constant influent). 

 

Quality criteria calculation and analysis 

Quality criteria calculation. To automatically calculate the quality criteria, a modified version of 

BlueM.OPT (Bach et al., 2009, http://www.bluemodel.org/) was used. BlueM.OPT is the 

optimization framework of BlueM, a software package for river basin management. For each target 

constituent in the dynamic simulation period, the 31 quality criteria were automatically calculated 

from the 5000 output files (containing the daily averaged simulation results) and the reference file 

(containing the observations).  

 

Quality criteria analysis. The evaluation of quality criteria was performed with R. Among all 

calculated criteria, the first task was to highlight those that are non-correlated, i.e. that provide non-

redundant information. To this aim, Pearson, Spearman and Kendall correlation coefficients 

between the criteria were calculated. Spearman and Kendall are rank correlation coefficients that 

non-parametrically measure the dependence of two variables, whereas Pearson correlation implies a 

linear relationship between variables. 
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As different quality criteria have different optimal values (-∞, 0, 1, +∞) (see also Appendix 1), all 

quality criteria were first mathematically transformed to obtain values between 0 and +∞ (or 0 and 

1) with 0 being the optimal value (see Appendix 1). Thanks to these transformations, the criteria 

that have a negative correlation coefficient are anti-correlated, which means that when one criterion 

is improved, the other one is deteriorated, and criteria that have a positive correlation coefficient 

close to 1 are highly correlated, which means they provide essentially the same information. The 

similarity of the criteria will be described through a cluster analysis, leading to a dendrogram, 

presented in the results section. 

 
Table 2. Cemagref ASM1 default parameter set at 20°C (Choubert et al., 2009) and fractionation used in the modelling 

project, ASM1 parameter range values taken from the 25-75% percentiles of database results (Hauduc et al., 2011) 

enlarged by 10% and fractionation ranges ±20% of the initial fractionation. 

Kinetic parameters   Stoichiometric parameters 

Parameter* Initial Range Unit   Parameter* Initial Range Unit 

qXCB_SB,hyd 3 1.98 - 3.3 g XCB.g XOHO
-1.d-1   YOHO,Ox 0.67 0.558 - 0.737 g XOHO.g XCB

-1 

KXCB,hyd 0.03 0.018 - 0.187 g XCB.g XOHO
-1   YOHO,Ax 0.54 0.496 - 0.594 g XOHO.g XCB

-1 

ηqhyd,Ax 0.4 0.36 - 0.55 -   YANO 0.24 0.216 - 0.264 g XANO.g SNOx
-1 

μOHO,Max 6 5.13 - 6.6 d-1   fXU_Bio,lys 0.08 0.072 - 0.11 g XU.g XBio
-1 

ημOHO,Ax 0.8 0.72 - 0.88 -   Composition parameters  

bOHO 0.62 0.549 - 0.682 d-1   iN_XBio 0.086 0.0711 - 0.0946 g N.g XBio
-1 

KO2,OHO 0.05 0.045 - 0.22 g SO2.m
-3   iN_XUE 0.06 0.054 - 0.066 g N.g XUE

-1 

KSB,OHO 20 9 - 22 g SB.m-3   Settling parameters   

KNOx 0.1 0.09 - 0.55 g SNOx.m
-3   fns 0.003 0.001-0.005 - 

μANO,Max 0.8 0.594 - 0.99 d-1   Fractionation From 

bANO 0.17 0.072 - 0.187 d-1   SU 7% 5.6-8.4% DCO 

qam 0.08 0.063 - 0.088 m3.g XCB,N
-1.d-1   SB 25% 20-30% DCO 

KNHx 0.1 0.675 - 1.1 g SNHx.m
-3   XU,Inf 8% 6.4-9.6% DCO 

KO2,ANO 0.2 0.18 - 0.825 g SO2.m
-3   XOHO 8% 6.4-9.6% DCO 

θKXCB,hyd 1  -   XCB 52% 42.4-61.8% DCO 

θμOHO,Max 1.072  -   SNHx 100% - NH4 

θμANO,Max 1.059  -   SB,N 22% 17.6-26.4% Norg 

θbOHO 1.029  -   SU,N 0% - Norg 

θbANO 1.027  -   XCB,N 78% 73.8-82.4% Norg 

θqXCB_SB,hyd 1.072  -       
θqam 1.072  -   * Standardised notation from Corominas et al. (2010) 

 

RESULTS AND DISCUSSION 

Results of the 5000 simulations on the case study example 

The results of the 5000 simulations are presented for some of the target constituents in Figure 3: 

TSS in tanks, effluent COD, NH4
+
-N, and NO3

-
-N. A histogram of the values obtained at day 30 is 

presented on the right side. Day 30 was chosen as representative of the normal plant operation, 

before the aerators broke down. 

These graphs show the dependency of the model response to changes in the parameter set, 

compared to the observed values represented by the thick line. The histograms allow better 

visualisation of the spread of the modelled values compared to the observed values. It should be 

noted that the simulations from the 5000 parameter sets are often overestimated, especially for TSS 

in the tank (biomass prediction) and ammonia. This is probably due to non-suitable combinations of 

parameters (µ,b) for heterotrophs and autotrophs respectively, since no correlation between 

parameters was taken into account. 

During the breakdown of the aerators, the model behaviour follows the observed values: 

nitrification cannot occur anymore so that the ammonia concentration increases and the nitrate 

concentration decreases to zero. Between days 51 to 68, the aerators are running permanently, 

resulting in low ammonia concentrations when nitrification is re-established, and to high nitrate 
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concentrations. Note that for a number of parameter sets, no or only low nitrification activity is 

simulated, leading to high ammonia and low nitrate concentrations. 

 

a)

  

b)

  

c)

  

d)

  

Figure 3. Results of the 5000 Simulations (left) and histograms of the values obtained at day 30 (right) for a) Effluent 

COD, b) Effluent TSS, c) Effluent NH4
+ and d) Effluent NO3

-. Bold lines correspond to the observed daily composite 

values. On day 48 all aerators broke down for 3 days, then from day 51 to 68 the aerators were running permanently. 

 

Quality criteria ranges 

The ranges for the relative quality criteria (classes 3 to 6) are calculated over the 5000 simulations 

and for all constituents. They are represented in Figure 4 using boxplots, with the thick bar 

indicating the median, boxes indicating 25-75% percentiles, and whiskers indicating the 5-95% 

percentiles. The target value is indicated on the left of each boxplot (0 or 1). 

These boxplots indicate the ranges of quality criteria values that could possibly be found in a typical 

wastewater simulation study. These values can be used for example to set quality criteria levels in 

an automated calibration procedure. 
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Figure 4. Boxplots of the calculated quality criteria over the 5000 simulation and for all target constituents. (Thick bar: 

median; boxes: 25-75% percentiles; whiskers: 5-95% percentiles; target value: *0* or *1* on the left of each boxplot). 

 

Selection of non-correlated criteria for the case study 

To describe the results of criteria correlation, a dendrogram is built from a cluster analysis (Figure 5 

for TSS in the effluent), based on the dissimilarity measure calculated as 1 minus the transformed 

correlation coefficient. Consequently, a dissimilarity measure of 2 means that the criteria are 

completely anti-correlated, a dissimilarity measure of 1 means that the criteria are non-correlated 

and a dissimilarity measure of 0 means that the criteria are completely correlated.  

For each target constituent, a dendrogram that represents the similarity between quality criteria was 

built, with each of the three methods: Pearson, Spearman and Kendall. The three methods lead to 

very similar dendrograms. However, the Kendall method better distinguishes between quality 

criteria and was therefore chosen. An example of the obtained dendrogram with the Kendall method 

is presented in Figure 5 for the effluent TSS constituent.  

This dendrogram aims at helping a model user to choose non-redundant quality criteria for a 

planned modelling study. The selected quality criteria should be non-correlated, but the modeller 

should choose the number of criteria he would keep and which of them, depending on the modelling 

objectives and the properties of the criteria (to point out differences in peaks, bias, time lag…, see 

Appendix 1). For a better quality evaluation of simulations, it is advisable to choose at least anti-

correlated criteria (at least 2 criteria on the example in Figure 5). As our case is an exploratory case 

study, there is no specific modelling objective. Consequently, an arbitrary cut-off of 0.5 was 

selected, and one representative criterion was chosen for each separate branch above this value. 

Using a cut-off value of 0.5 between 3 and 8 branches were identified depending on the constituent. 

Relative criteria are preferred, since they can be compared with other target constituents. For 

instance, RMSE is the most commonly used quality criterion in the WWTP field (Dochain and 

Vanrolleghem, 2001; Ahnert et al., 2007; Sin et al., 2008), but it is not a relative criterion. MSRE, 

that is close to RMSE, is then preferred. 
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Figure 5. Dendrogram using the Kendall method of similarity between quality criteria for the effluent TSS constituent 

(0: correlated criteria; 1: non-correlated criteria; 2: anti-correlated criteria) 

 

On the example of the effluent TSS constituent (Figure 5), the line fixed at 0.5 cuts 6 branches. 

Consequently, 6 quality criteria should be chosen, one per branch. Among the 6 branches, 3 

branches lead to a single criterion (MSDE (1
st
 from left to right), AME (5

th
) and IA (6

th
)). A choice 

among several criteria has to be made for only 3 branches. For the 2
nd

 branch the MSRE (a relative 

criterion) is selected. In the 3
rd

 branch the Nash-Sutcliff criterion (CE1,2) commonly used in 

environmental sciences is chosen. Finally, for the 4
th
 branch PBIAS is selected. The same procedure 

was carried out for the 5 other target constituents, leading to the resulting quality criteria presented 

in Table 3. 

 
Table 3. List of non-correlated criteria (described in Appendix 1) for each constituent and finally chosen criteria 

Constituant Non-correlated criteria  Chosen criteria  

TSS in Tank PBIAS, MSDE, MSRE MSDE, MSRE 

Effluent COD MSDE, MSRE, PBIAS, IA MSDE, MSRE, IA 

Effluent TSS AME, CE1,2, IA, MSDE, MSRE, PBIAS AME, IA, MSDE, MSRE 

Effluent TKN MSDE, MSRE, PBIAS, MAPE, PEP, MSSE - 

Effluent NH4-N MSDE, MSRE, PI, PBIAS, PEP, CE1/2,2 MSDE, MSRE, PEP, CE1/2,2 

Effluent NO3-N MSDE, MSRE, PBIAS, PEP, CE1,2, IA, PI, CE1/2,2 MSDE, MSRE, PEP, CE1,2 

 

This 1
st
 clustering analysis leads to the selection of a total of 33 quality criteria for the 6 

constituents, which is still a large number of criteria to deal with. Moreover, this methodology does 

not quantify the similarity between criteria of different constitutents. Consequently, a 2
nd

 clustering 

analysis was performed on these 33 quality criteria leading to the dendrogram presented in Figure 6. 

This dendrogram underlines that the study of NH4-N and TKN profiles essentially provides the 

same information. Consequently, only the NH4-N constituent should be studied. Again, fixing a 

limit to 0.5 leads to a subset of 17 quality criteria that are summarised in Table 3.  
 

 
Figure 6. Dendrogram using the Kendall method of the 33 selected quality criteria (TST for TSS in tank, TSE for 

effluent TSS) 

 

CONCLUSIONS 

 Thirty-one criteria have been compiled and structured using two classification schemes. 

First they were grouped into six main classes following the way they are calculated: 1) 

single event statistics, 2) absolute criteria from residuals, 3) residuals relative to observed 
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values, 4) total residuals relative to total observed values, 5) agreement between 

distributional statistics of observed and modelled data, and 6) comparison of residuals with 

reference values and with other models. In the second classification scheme 6 main 

characteristics of the adjustment of predicted values to observations were distinguished: i) 

mean error, ii) bias, iii) large errors, iv) small errors, v) peaks and vi) events dynamics. 

 The criteria were evaluated on a WWTP modelling case study, based on simulation of 5000 

Latin Hypercube Sampled parameter sets using parameter ranges found in literature.  

 A two-step cluster analysis using Kendall correlation and dendrograms is proposed to select 

criteria that provide non-redundant information. 

 

OUTLOOK 

It is suggested to use the identified independent criteria for multi-objective parameter estimation, 

either by the use of a linear combination of the criteria (van Griensven et al., 2002) or the use of 

Pareto optimisation methods (Yapo et al., 1998; Muschalla et al., 2008). 
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