

Overview

- General introduction
- The riv EAU project
- Test case + Experimental proof of concept
- Control strategy
- Model first approach (SWMM)
- Model second approach (WEST)
- Conclusion

model*EAU*

Integrated modelling: Model combinations of different systems For water systems: Catchment + River + Sewer + WWTP The Brussels case study... For water systems: Catchment + River + Sewer + WWTP The Brussels case study... Sevent with (mit) Sevent with

General introduction • What can we do with integrated modelling? • Predict the future for different operation conditions • Test different configurations • Optimize the use of existing systems

The riv *EAU* project

Improve Eco-hydraulics:

Reduce hydraulic stress

and

Reduce effects on the quality (pathogens, heavy metals...)

7

Idea

Focus on TSS and contaminants

Fine particles account for less than 10 % of TSS but contain:

- 25 % of COD
- 30 % of N
- 50% of P
- More than 50 % of Heavy Metals

(Brombach et al. 1992)

Idea Focus on TSS and contaminants Control outlet of basin to Extend the hydraulic retention time Increase the removal efficiency for TSS and agglomerated contaminants

Proof of principle: Test case Stormwater Basin Chauveau - overview

- Separate System
- Stormwater part designed as dual drainage system
- Residential area
- ~15 ha
- Degree of imperviousness ~30 %
- ~900 inhabitants

11

Proof of principle: Test case Stormwater Basin Chauveau - overview

- 3300 m³
- Max. water level 1.4 m
- Max. outflow ~350 l/s

UNIVERSITÉ LAVAL

Overview

- General introduction
- The riv*EAU* project
- Test case + Experimental proof of concept
- Control strategy
- Model first approach (SWMM)
- Model second approach (WEST)
- Conclusion

17

Control strategies Objectives

- Decrease loads of TSS and agglomerated contaminants by increasing time for sedimentation
- Decrease hydraulic peaks by limiting maximum outflow
- Avoid overflows
- Consider aquatic life stages of mosquitoes as limiting factor on the time water can be stored

Control strategies Rules examined

- Static control (10 Scenarios)
 - Fixed maximum outflow between 15 and 150 l/s (~3 l/(s*ha) and ~33 l/(s*ha)
- Dynamic Control (basic set)
 - If runoff then close outlet
 - If runoff and defined water level is reached then open outlet to a defined percentage
 - If defined maximum water level is reached then open outlet completely

19

Control strategies Rules examined

Dynamic Control (updated)

- Mosquito control
 - Basic set
 - If stormwater is stored longer than 80% of the aquatic life span of Mosquitoes then open outlet to a defined percentage
- Volume free-up control
 - Basic set
 - If stormwater is stored longer than time span needed to settle finest particles then open outlet to a defined percentage

Model – first approach (SWMM)

- Build-up and wash-off
- TSS model for stormwater basin based on 6 particle size fractions

$$C_{TSS,i} = TSS_i \cdot e^{-\frac{v_{s,i} \cdot \Delta t}{depth}}$$

21

Model – first approach

	Size fraction	Particle size range (µm)	Average settling velocity of particles	Fraction of total mass contained in	Fraction of total mass contained in
	i	ταιίδε (μ.ι.)	in size fraction i, V _{s,i} (m/s)	size fraction i (%) - MOEE	size fraction i (%) - measured
Ī	1	x ≤ 20	2.54E-06	20	83.4
	2	$20 \le x \le 40$	1.30E-05	10	9.1
	3	$40 \le x \le 60$	2.54E-05	10	4.4
	4	$60 \le x \le 130$	1.27E-04	20	4.1
	5	$130 \le x \le 400$	5.93E-04	20	-
	6	400 ≤ x ≤ 4000	5.50E-03	20	-

Overview

- General introduction
- The riv*EAU* project
- Test case + Experimental proof of concept
- Control strategy
- Model first approach (SWMM)
- Model second approach (WEST)
- Conclusion

Integrated modelling developments

- Make long-term simulations with the calibrated model
- Confirm the effect of control strategies on TSS released in the river
- Determine the best control strategy, not on the TSS removal but on the river water quality improvement

Conclusion

- Integrated modelling is an important tool to consider different options.
- It helps to predict future and to take advised decisions.
- It can be used to test new configuration or use (riv EAU).
- It is better with calibrated models but can also be used with default parameters to check ideas

