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Abstract 
We propose methods that practitioners can currently include in modelling-based projects to 
account for uncertainty and variability.  
 

Keywords 
Design, modelling, operation, risk, uncertainty, variability  

 
 
 
INTRODUCTION 
Models are increasingly used in wastewater engineering for a multitude of purposes ranging from 
process optimisation to design. However, although models are widely used in engineering practice, 
it often remains unclear how to adequately account for the associated uncertainty and variability. 
Variability is hereby defined as the “real spread” of values (in time or space) of a well-specified 
population (such as historic daily COD load variability in the influent of a specific treatment plant). 
The spread of these values is not reducible. Uncertainty, on the other hand, results from a lack of 
knowledge. Parameter uncertainty is the uncertainty about the values of model parameters (e.g. 
half-saturation constants). Model structure uncertainty pertains to the adequacy of the model 
equations and the model resolution in view of the modelling objective. Unlike variability, 
uncertainty is partly reducible: e.g. through further measurements or deeper investigations into the 
relevant processes. Although the topic on how to adequately account and deal with variability and 
uncertainty is an active research topic in academia this contribution highlights which tools and 
methods are already available for adoption in engineering practice. 
 
 

APPROACHES TO INCLUDE UNCERTAINTY AND VARIABILITY 
 

Accounting for variability 
Variability in WWTPs occurs in time and space. Whereas accounting for temporal variability is the 
central aspect of dynamic modelling, spatial variability has typically only been coarsely resolved 
using compartmental models such as tanks-in-series.  
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Tools to account for temporal variability include probability distributions, dynamic modelling, 
multivariate time series analysis, and influent generators. Probability distributions can be used to 
describe the frequency of dynamic variables such as flows or loads. This is useful when using a 
steady-state solution of the model: E.g. when describing average monthly behaviour the influent 
concentrations and flows can be sampled from the (joint) probability distributions to capture 
meaningful scenarios (Bixio et al. (2002), McCormick et al. (2007)). In addition, cumulative 
distributions are often used to characterise plant performance. They summarise the information 
contained in a time-series and allow extracting the frequency of exceedance of effluent 
concentration limits. Dynamic solutions capture how dynamic influents affect the state variables of 
the system and predict a dynamic effluent profile from which the desired statistics can be extracted. 
An advantage of using historic time series and dynamic models is that temporal dependence (auto-
correlation) is appropriately and explicitly accounted for. Multivariate time series models can be 
used to generate synthetic time series with the same characteristics as historic time series retaining 
the cross-correlation between variables. If synthetic time series are required that represent future 
load scenarios influent generators need to be used (Gernaey et al., 2010).  
 
Concerning the description of spatial variability the rapidly growing CFD (computational fluid 
dynamics) applications allow investigating spatial phenomena at high resolution (e.g. Gresch et al., 
2011). Such analyses are critical for multiphase systems (settling) or systems that need to guarantee 
a certain contact time (disinfection). To decrease the computational burden methods have been 
developed that allow translating a CFD model to a compartment model (Gresch et al., 2009).  
 

Accounting for uncertainty 
Parameter uncertainty can be addressed by assigning probability distributions to parameters to 
reflect the knowledge of the engineer. In applications where no data is available, a priori uncertainty 
estimates are obtained from expert knowledge. The effects of parameter uncertainty on model 
outputs can be quantified by the use of Monte Carlo simulation techniques (Benedetti et al., 2008; 
Sin et al., 2009). In the case of an existing system, some parameters may be measured directly (with 
experiments) while others can be estimated by means of calibration. 
 
For the practitioner, model structure uncertainty can be addressed in various ways. In contrast to a 
scientist who is developing a model from first principles to test a research hypothesis, the engineer 
will typically select a model from a model library. The engineer is restricted to the models 
implemented in commercial simulators. To address model structure uncertainty, the analyst may 
want to repeat the modelling exercise with a different model or integrate his/her own model 
structure extensions or reductions.  
 
Uncertainty due to implementation errors or numerical errors can be captured through the use of 
multiple simulators, but this may not be possible in practice due to time restrictions. Numerical 
accuracy can be checked by changing the solver properties (such as time step size or solver type and 
accuracy). 
 
Scenario uncertainty can be accounted for by applying scenario analysis techniques to account for 
multiple possible futures in terms of loads, requirements, etc. (Dominguez et al. 2009). If 
quantifiable, scenario uncertainty can also be accounted for in model applications by Monte Carlo 
simulation.  
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Typically, a sensitivity analysis is required to prioritize the sources of uncertainty. For instance, the 
uncertainty of one of the parameters may be very large; however, due to non-linearity the effect on 
the model variable might be very small. The same holds for the opposite case: a parameter with 
little uncertainty might cause large uncertainty in one of the design variables. Some of the recently 
proposed methods in scientific literature are available and easy to implement (e.g. Benedetti et al., 
2011; Sin et al., 2011). 
 
 

WHAT ARE WE LACKING?  
Although there are many approaches available to explicitly account for uncertainty and variability, 
open questions remain which are addressed in current research, e.g.: 

• How to move from guidelines with the safety factor approach to probabilistic model-based 
design? 

• Determination of prior uncertainty ranges (e.g. in design). 
• Parameter (uncertainty) estimation in systems with poor identifiability. 
• How to adequately deal with model structure uncertainty? 

 
 

CONCLUSION 
For practitioners: there are many tools available to account for uncertainty and variability – their 
use should be encouraged. For scientists: there are still problems to solve, especially regarding the 
applicability of methods in practice (e.g. determination of prior uncertainty) and the exploration of 
promising methods (e.g. Bayesian estimation, Artificial Intelligence). 
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