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The problem of model discrimination arises when several models are proposed to describe one and the same
process, a situation encountered in many research fields. To identify the best model from the set of rival
models, it may be necessary to collect new information about the process, and thus additional experiments
have to be performed. Several approaches have been described in literature to design optimal discriminatory
experiments. The anticipatory approach is one of them and is very appealing from a conceptual point of view
because the expected information content of the newly designed experiment is considered, even before the
experiment is performed (anticipatory design). In this paper, the performance of this approach is evaluated by
comparing it with the performance of other, established approaches to optimal experimental design formodel
discrimination. To conduct this comparison four performance measures were defined: (1) whether the most
appropriate model could be identified, (2) the number of additional experiments that have to be designed and
performed to achieve model discrimination, (3) the quality of the parameter estimates of the model that is
eventually identified as the most appropriate one, and (4) the rate at which the inadequate models are
identified. The results clearly indicate that the anticipatory approach has its benefits andmay be the preferred
approach in many applications in (bio)chemical engineering and in-silico biology.
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1. Introduction

Mathematical models are frequently used for the design, optimi-
zation and control of sometimes complex (bio)chemical processes.
They also have the potential to be(come) very valuable tools to
organize data and to consider interactions in complex systems in a
rational way. In fact, they are increasingly used for this purpose in
many research areas, especially in the emerging fields of systems
biology [3,13,19] and synthetic biology [1,21]. In his influential
overview paper [23], Kitano stresses that although the advances
made in molecular biology to accurately gather quantitative experi-
mental data have been enormous and will certainly continue, insights
into the functioning of biological systems will not result from
educated guesses alone, because of their intrinsic complexity. Instead,
a combination of experimental and computational approaches is
expected to resolve this challenging problem and, consequently,
experimental design techniques will become increasingly important,
as recognized by many researchers in the field [5,18,26,33,36,40].

The methods to design experiments that allow discriminating
among rival models in an effective and efficient way, often referred to
as optimal experimental design for model discrimination (OED/MD)
or optimal experimental design for (model)structure characterization
[41], will be the main focus of this paper. Indeed, when insight in a
process is insufficient, several hypotheses can be postulated on how
the process actually works. Each of these hypotheses can subsequent-
ly be translated into a unique model structure, and a set of rival
models for the process arises. Obviously, one is especially interested in
the model that describes the process under study in the most
appropriate way. To identify this model from the set of rival models, it
may be necessary to collect new information about the process, and
thus additional experiments have to be performed.

The problem of model discrimination has been addressed in a
number of ways (see [14] for a review), but common to all design
criteria is the fact that the problem is tackled as and translated into an
optimization problem. In the pioneering work of Hunter and Reiner
(1965) [22], the difference between the model predictions is simply
maximized (as explained in more detail further on). Although this
approach does not take into account the uncertainties inherently
involved in both the modelling phase and the experimentation phase,
the basic rationale is still present in (as good as) all design criteria for
OED/MD developed so far.

Buzzi-Ferraris and co-workers presented a design criterion that
takes into account both the uncertainty on the measurements and
the (resulting) uncertainty on the parameter estimates and model
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predictions [8]. The latter was further refined in [15] and [38], where
the so-called anticipatory approach to OED/MD was introduced. In
this approach, the expected information content of the newly
designed experiment is considered, even before the experiment is
performed (whence the term anticipatory design). In this way, a
better estimate of the uncertainties can be achieved and an
experiment with an increased discriminatory potential can be
obtained. Because of the similarity of this approach with the
conventional, state-of-the-art design criteria for optimal experimen-
tal design for parameter estimation (OED/PE), improved parameter
estimates can be obtained in addition tomodel discrimination [15,38].

The objective of this paper is to determine whether different
approaches to OED/MD differ in their ability to bring forth a series of
(informative) discriminatory experiments. In the evaluation of their
performance, four aspects are considered after applying them to a
case study with nine rival models that was used in previous work on
the subject [15–17]. The first aspect has to do with the outcome of the
model discrimination procedure, that is, how the procedure ends
(most appropriate model identified or all rival models rejected). The
second aspect is related to the number of additional experiments that
have to be (designed and) performed before the most appropriate
model can be identified. It is clear that this is very important, as one
obviously wants to minimize the number of additional experiments.
The third aspect is related to the quality of the parameter estimates of
the model that is eventually identified as the best one (if any). The
fourth and last aspect of the performance evaluation is related to the
rate at which the inadequate models are identified.

This paper is organised as follows. In Section 2, the basic rationale
of optimal experimental design for model discrimination is explained
and formalized in a mathematical manner. The section also presents
the approaches to design optimal discriminatory experiments that
were considered in this paper, as well as the four performance
measures that were used in their evaluation. To conclude, this section
explains how a case study was designed to investigate the
performance of the OED/MD methods. The results obtained after
applying these methods to the case study are presented and discussed
in Section 3 and the conclusions are presented in Section 4.

2. Methods

2.1. Mathematical model representation

In what follows, general deterministic models in the form of a set
of (possibly mixed) differential and algebraic equations are consid-
ered, using the following notations:

ẋ tð Þ = f x tð Þ;u tð Þ; θ; tð Þ; x t0ð Þ = x0 ð1Þ

ŷ tð Þ = g x tð Þð Þ ð2Þ

where x(t) is an ns-dimensional vector of time-dependent state
variables, u(t) is an nu-dimensional vector of time-varying inputs to
the process, θ is an np-dimensional vector of model parameters taken
from a continuous, realizable set Θ, and ŷ tð Þ is an nm-dimensional
vector of measured response variables that are function of the state
variables, x(t). An experiment will be denoted as ξ, and is determined
by the experimental degrees of freedom such as measurement times,
initial conditions and time-varying or constant process inputs.

2.2. Parameter estimation

The values of the model parameters, which by definition do not
change during the course of the simulation, have to be determined
from experimental data. This process is called parameter estimation,
and typically consists of minimizing the weighted sum of squared
errors (WSSE) functional through an optimal choice of the parameters
θ. The WSSE is calculated as follows

WSSE θ̂
� �

=∑
k=1

ne

∑
nspk

l=1
Δ ŷ ξk;θ̂; tl
� �

′⋅Q·Δ ŷ ξk; θ̂; tl
� �

; ð3Þ

where

Δ ŷ ξk; θ̂; tl
� �

=y ξk; tlð Þ− ŷ ξk; θ̂; tl
� �

ð4Þ

represents the difference between the vector of the nm measured
response variables and the model predictions at time tl (l=1,…, nspk

)
of experiment ξk (k=1, …, ne). Further, ne represents the number of
experiments from which data is used for estimating the parameters,
nspk

represents the number of sampling points in experiment ξk, and Q
is an nm-dimensional matrix of user-supplied weighing coefficients.
Typically,Q is chosenas the inverseof themeasurement error covariance
matrix ∑ [28,35,42]. In this way, the measurement uncertainty is
incorporated in the WSSE.

2.3. Model adequacy testing

To test amodel's adequacy, a lack-of-fit test, as outlined for instance
in [9–11], can be used. This test is based on the property of the WSSE-
functional being a sample from aχ2 distributionwith n−np degrees of
freedom. However, this property only holds under two assumptions
[11]: (i) the measurements are disturbed with random zero mean
normally distributed noise with known (or a priori estimated)
variance, and are not subject to systematic errors; and (ii) no model
errors are present.

In this work, the data to which the models are fitted (see below) is
generated by adding noise to the simulation results of which the
characteristics are known, so the first assumption is always valid.
Consequently, when the WSSE is significantly larger than the expected
value of the appropriate χn−np

2 distribution, one can conclude that the
model is not able to describe the experimental data in a reasonable
manner and the model can thus be rejected.

2.4. Optimal experimental design for model discrimination

In general, optimal experimental design is an optimization
problem, where the optimum of a well-defined objective function is
sought by varying the experimental degrees of freedom. This can be
formalized as follows

ξ⋆= argmax
ξ∈Ξ

T ξð Þ: ð5Þ

The experimental degrees of freedom, ξ, are restricted by a number
of constraints that define a set of possible experiments, denoted as Ξ.
These constraints are determined by the experimental setup and are
specified before the start of the experimental design exercise. Note
that in this context, the objective functions are also called design
criteria, and these terms will be used as synonyms in the following.

2.4.1. Design criterion of Hunter and Reiner (1965)
Suppose, for simplicity, that one has to design an experiment to

discriminate between two rival models (m=2). It is clear that the
data expected from the designed experiment should be predicted
differently by the two models to allow for model discrimination.
Hunter and Reiner translated this heuristic into an objective function
[22] given by

Tij ξð Þ=∑
nsp

l=1
Δ ŷij ξ;θ̂i;θ̂j; tl

� �
′·Δ ŷij ξ;θ̂i;θ̂j; tl

� �
; ð6Þ
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where

Δ ŷij ξ;θ̂i;θ̂j; tl
� �

= ŷi ξ;θ̂i; tl
� �

− ŷj ξ;θ̂j; tl
� �

ð7Þ

represents the difference between the nm-dimensional vectors of the
predicted outcomes of experiment ξ by model i and model j at time tl,
and nsp represents the number of sampling points. Note that this
notation will be simplified to Δ ŷij ξ; tlð Þ in the following.

It is important to point out that this objective function does not
take into account the uncertainty on the measurements, nor on the
model predictions. However, it is important to do so. Indeed, the
difference in themodel predictionsmay be high for a particular subset
of the experimental degrees of freedom, but when those experimental
conditions result in a situation that is characterized by a high
measurement error, discrimination may not be possible after all.
Furthermore, when the uncertainty on the model predictions is high,
the predicted difference in the model predictions may be less
pronounced than expected and the value of the designed experiment
with regard to model discrimination may ultimately be limited.

2.4.2. Modified design criterion of Hunter and Reiner (1965)
Incorporating the uncertainty on the measurements can easily be

done using the measurement error covariance matrix in a similar way
as in the objective function used for parameter estimation (Eq. (3)).
This results in the following objective function:

Tij ξð Þ=∑
nsp

l=1
Δ ŷij ξ; tlð Þ′·∑ ξ; tlð Þ−1·Δ ŷij ξ; tlð Þ: ð8Þ

Here, ∑ ξ; tlð Þ represents the measurement error covariance
matrix at time tl of experiment ξ.

2.4.3. Design criterion of Buzzi-Ferraris (1984)
The design criterion proposed by Buzzi-Ferraris and co-workers [8]

builds further on the modified version of Hunter and Reiner's design
criterion (Eq. (8)) and also incorporates the uncertainty on the model
predictions. This is done by weighing the difference in the predicted
outcomes of an experiment, denoted as Δ ŷij ξ; tlð Þ, with the uncer-
tainty associated with them. This uncertainty originates from two
sources: the uncertainty on the measurements on the one hand, and
the uncertainty on the predictions of both models on the other hand.

Also for the model predictions, a covariance matrix is used to
quantify the associated uncertainty. The model prediction error
covariance matrix associated with time tl of experiment ξk, denoted
as Ω(ξk, tl), is calculated by propagating the uncertainty on the
parameter estimates according to [35]. This is formalized as

Ω ξk; tlð Þ = ∂ ŷ ξk; θ; tlð Þ
∂θ

����
θ̂

 !
·Φ·

∂ ŷ ξk; θ; tlð Þ
∂θ

���� ′

θ̂

 !
; ð9Þ

where ∂ ŷ
∂θ represents the sensitivities of the response variables (ŷ) to

changes in the parameters (θ) and Φ represents the parameter
estimation error covariance matrix, that can be approximated by the
inverse of the so-called Fisher information matrix [2,27,29,43]:

Φ−1 = ∑
ne

k=1
FIM ξkð Þ: ð10Þ

This parameter estimation error covariance matrix is then used in
the calculation of the uncertainty on the model prediction, as shown
in Eq. (9). For more detailed information on the calculation of the
Fisher information matrix and the uncertainties, the reader is referred
to [15] where the anticipatory approach is described in more detail
and where the same notations were used.
Now, when ∑ ξ; tlð Þ and Ω(ξ, tl) are assumed to be independent,
the uncertainty on the predicted outcome of an experiment can be
estimated as ∑ ξ; tlð Þ + Ω ξ; tlð Þ. However, this assumption is not
entirely valid. Indeed, the measurement uncertainties are used when
estimating the model parameters (Eq. (3)), which are on their turn
used in the calculation of the uncertainties on the model predictions
(Eq. (9)). Still, it is a reasonable one in this context because it is a
theoretical dependence and the objective function is practically useful
and helps to identify the most appropriate model. Under a similar
assumption of independence, the uncertainty on the difference
between the predicted outcomes of an experiment ξ by model i and
j, denoted as Ψij(ξ, tl), is given by

Ψij ξ; tlð Þ = ∑ ξ; tlð Þ + Ωi ξ; tlð Þ + ∑ ξ; tlð Þ + Ωj ξ; tlð Þ

= 2·∑ ξ; tlð Þ + Ωi ξ; tlð Þ + Ωj ξ; tlð Þ:
ð11Þ

The objective function thus becomes

Tij ξð Þ = ∑
nsp

l=1
Δ ŷij ξ; tlð Þ′·Ψij ξ; tlð Þ−1·Δ ŷij ξ; tlð Þ; ð12Þ

where Ψij(ξ, tl) represents the uncertainty on the difference between
the predicted outcomes of an experiment by models i and j at time tl.

2.4.4. Anticipatory approach to OED/MD
From a conceptual point of view, the design criterion proposed by

Buzzi-Ferraris and co-workers (Eq. (12)) is superior to the other ones
because of the importance it gives to the uncertainty when
performing model discrimination. Still, this design criterion can be
further improved by recalculating the parameter estimation error
covariancematrix for each proposed experiment by also including the
expected information content of this new experiment. In this way, the
expected information content of the newly designed experiment is
accounted for, even before the experiment is performed (hence the
term anticipatory design). This so-called anticipatory approach to
OED/MD was developed simultaneously and independently in [38]
and [15].

The objective function or design criterion used in this approach is
basically the same as Eq. (12), but the difference lies in the calculation
of the parameter estimation error covariance matrix (denoted as Φ),
which is recalculated for each proposed experiment by also including
the expected FIM associated with this new experiment. This can be
formalized as follows

Φ−1 = ∑
ne

k=1
FIM ξkð Þ + FIM ξne +1

� �
; ð13Þ

where the expected information content of the newly designed
experiment is represented by FIM(ξne+1).

2.4.5. OED/MD for more than two rival models
The design criteria described above were developed for model

discrimination problems with two rival models. However, when the
number of rival mathematical models is larger than two (as in the case
study presented below), several strategies are thinkable to steer the
model discrimination procedure, irrespective of which design
criterion is chosen. Here, the so-called pairwise strategy is chosen,
where an optimal discriminatory experiment is designed for each
model pair, and the experimentwith the largest Tij value (as defined in
Eq. (5)) is eventually performed. Other design strategies are possible,
but for this the interested reader is referred to [9,14,37].



Table 2
Overview of the nine different rival models used to investigate the performance of the
selected approaches to design optimal discriminatory experiments.
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2.5. Selection of the most promising approaches to OED/MD

In this paper, the performance of the four objective functions
described above and summarized in Table 1 will be compared. The
approach proposed by [22] is selected for its simplicity and because it
represents the basic idea behindOED/MD. In away, this approach canbe
seen as a reference approach with which the effects of the conceptual
improvements incorporated in the other approaches can be compared.
Also, the modified version of this approach is selected because this
approach is the only one that takes into account themeasurement error
without considering the uncertainty on the model predictions as well.
The notations Ta and Tbwill be used to indicate these approaches,which,
for clarity, use the objective functions given by Eqs. (6) and (8).

The design criterion of Buzzi-Ferraris (1984), described by Eq. (12),
is also selected because it incorporates both the uncertainty on the
measurements and on the model predictions and because it has
already been used successfully by other researchers (for instance in
[6,7,24,37]). The anticipatory approach is the fourth selected approach,
and thesewill respectively be referred to as Tc and Td, in the discussion
below.

2.6. Performance measures to evaluate OED/MD design criteria

As stated in the introduction, theobjectiveof thecase studydescribed
and discussed below is to determine whether the four selected
approaches differ in their ability to bring forth a series of (informative)
discriminatory experiments. In the evaluation of their performance, four
aspects are considered:

1. The outcome of themodel discrimination procedure, that is, how the
procedure ends: either themost appropriatemodel is identified or all
rival models are rejected (discussed in Section 3.1).

2. The number of additional experiments that has to be (designed and)
performed before the most appropriate model can be identified. It is
clear that this is very important, as one obviously wants to minimize
the number of additional experiments (discussed in Section 2).

3. Thequality of theparameter estimates of themodel that is eventually
identified as the best one (if any). Indeed,when themost appropriate
model has been identified, its parameter estimates may have to be
further improved in order to get reliable model predictions. Good
quality parameter estimates aftermodel discrimination is of course a
beneficial and desired property of the OED/MD approach (discussed
in Section 3).

4. The rate at which the inadequate models are identified (discussed
in Section 4).

2.7. Description of the case study

To evaluate the performance of the different approaches, the same
case study was used as in other papers on the same topic [15–17]. In
this case study, nine models are defined to describe the kinetic
behavior of the enzyme glucokinase (glk, EC: 2.7.1.2), which catalyzes
the conversion of glucose (GLU) and ATP to glucose-6-phosphate
(G6P) and ADP. This reaction is the first reaction of the glycolysis
pathway and it was recently suggested that glucokinase may be
Table 1
Overview of the selected approaches to design optimal discriminatory experiments
(denoted as Ta, Tb, Tc and Td).

Ta Tb Tc Td

Experimental design driven by the difference in
the model predictions

× × × ×

Uncertainty on the measurements taken into account – × × ×
Uncertainty on the model predictions taken into account – – × ×
Information content of the designed experiment
taken into account

– – – ×
inhibited by phosphoenolpyruvate (PEP) [34]. Each model structure
represents a specific hypothesis on how the reaction process works
(as shown in Table 2), but for brevity the details on the model
structures are not given here and the reader is referred to the cited
papers if interested.

2.7.1. Design of the optimal discriminatory experiments
For the design of the optimal discriminatory experiments, the

sampling times and the initial concentrations of glucose, ATP and PEP
were chosen as experimental degrees of freedom, and were thus
optimized. Boundary conditions were defined for the initial concen-
trations and ten optimal sampling times were determined with the
constraint that the time between two consecutive samples was at
least 15 s. As in the other papers where this case study was used [15–
17], the χ2 lack-of-fit test described above was used to evaluate the
adequacy of the rival models.

2.7.2. Design of the case study
Because the performance of the different experimental design

methods might be influenced by the (information content of the)
preliminary experiment used to initiate the model discrimination
procedure, five different scenarios were worked out (as shown in
Fig. 1). Each scenario starts from a randomly generated preliminary
experiment, which is denoted as ξ1i (i=1, …, 5). The experimental
data were generated by simulating the experiment with the
(arbitrarily chosen) real model (m5) and the measurement error
was simulated by adding random noise as suggested by [39]:

σy = ŷ·ςy· 1 +
1

ŷ
lby

 !2

+
ŷ
lby

0
BBBBB@

1
CCCCCA: ð14Þ

Here, ςy and lby respectively represent a constant minimal relative
error and a lower accuracy bound on the measurement of y. In this
way, the standard deviations of the measurements are proportional to
the value of ŷ, but increase when the latter approaches the detection
limit or the lower accuracy bound of the measured state variable.

Although the first discriminatory experiment that is designed in the
model discrimination procedure is the same for each repetition of the
procedure (within a given scenario i), the data obtained from this
experiment are different due to these randomly generated measure-
ment errors. Consequently, the discriminatory experiments designed in
the following iterations of the procedure are different as well, because
the differences in the experimental data sets lead to differences in the
parameter estimates and their uncertainties. To account for this, each
model discrimination exercise is repeated thirty times (as indicated in
Fig. 1). In total, the model discrimination procedure is thus performed
5×4×30=600 times. Indeed, there are 5 scenarios (each with a
different preliminary experiment), 4 different approaches for OED/MD
Rival model Random Ordered Inhibition by PEP

Glucose ATP Glucose ATP

m1 × – – – –

m2 × – – – ×
m3 × – – × –

m4 – × – – –

m5 – × – – ×
m6 – × – × –

m7 – – × – –

m8 – – × – ×
m9 – – × × –



Fig. 1. Illustration of the design of the case study where the aim was to evaluate and compare the performance of four selected experimental design methods to discriminate among
rival models (denoted as Ta, Tb, Tc and Td).
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(Ta, Tb, Tc and Td) and themodel discrimination procedure was repeated
30 times to account for the different instances of the measurement
noise.

Note that each application of the model discrimination procedure
consists of an iterative sequence of experiments, which differs from
one repetition to another. In every iteration, an experiment is designed
and performed, and the number of iterations is equal to the number
of additional experiments that have to be performed before the most
appropriate model can be identified. The data obtained from this
simulation study will be presented and discussed in the following
sections.
Table 3
Overview of the observed outcomes of the 150 runs of the model discrimination
3. Results and discussion

In this section, the results obtained after applying the four
approaches to the case study are discussed. To organize the discussion,
each of the four performance measures described in Section 2.6 will be
dealt with successively.
procedure for the different approaches (Ta, Tb, Tc and Td) and the five scenarios (each
with a different preliminary experiment, ξ1i with i=1, …, 5).

Ta Tb Tc Td

Model m5 ξ11 30 30 30 27
ξ12 30 27 30 29
ξ13 28 27 30 25
ξ14 30 20 30 27
ξ15 28 24 30 26

2–6 ξ11−ξ15 146 128 150 134
97% 85% 100% 89%

Other model ξ11 0 0 0 0
ξ12 0 3 0 1
ξ13 0 3 0 4
σ1
4 0 5 0 3

ξ15 1 2 0 2
2–6 ξ11−ξ15 1 13 0 10

1% 9% 0% 7%
All models rejected ξ11 0 0 0 3

ξ12 0 0 0 0
ξ13 2 0 0 1
ξ14 0 5 0 0
ξ15 1 4 0 2

2–6 ξ11−ξ15 3 9 0 6
2% 6% 0% 4%
3.1. Outcome of the model discrimination procedure

Ideally, the model discrimination procedure ends when one of the
rivalmodels is identified as themost appropriate one. In this case study,
the experimentaldatawere generatedusingmodelm5 and it can thusbe
expected that model m5 is identified as the most appropriate model in
the majority of the runs, regardless of the approach used to design the
discriminatory experiments. However, the possibility that another
model is identified as the most appropriate one cannot be excluded. A
second possible outcome of the model discrimination procedure is that
all models appear to be inadequate. Indeed, the adequacy of the rival
models is evaluated based on the WSSE value, and even for the true
model (m5) this WSSE value can in some situations be larger than
the reference value (χn−np

2 ) because of the (simulated) error on the
measurements.

Note that a third possibility, where the discriminatory potential of
the designed experiment is conceived as too low to enable further
discrimination among the remaining rival models, is not considered
here as the correctness of the currently used criterion to evaluate the
discriminatory potential of an experiment [10] is questionable (as
discussed in [14]).

The results obtained in this case study are presented in Table 3. For
the Td approach, for instance, one can see thatmodelm5 was identified
as themost appropriate one in 134 of the 150 applications (or runs) of
the model discrimination procedure (5 scenarios with a different
preliminary experiment and 30 repetitions of each scenario). The
results indicate that also for the other approaches the truemodel (m5)
is found in most of the runs. From the results obtained for the Td
approach, one can also see that another model was identified as the
best model in 7% of the runs of the model discrimination procedure.
For brevity, it is not indicated which of the other rival models is
eventually identified as the best model, but, in themajority of the runs
where this occurred, model m2 was selected. This is not surprising
because models m2 and m5 only differ by the fact that the former
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assumes a random bindingmechanism, whereas the latter assumes an
ordered reactionmechanism (see Table 2). In other words, themodels
are very similar. In the other runs of the procedure, all rival models
were rejected. It is, however, noteworthy that the true model was
always identified as the most appropriate one when the Tc approach
was used. Although a profound explanation for this observation
cannot be given, it might be the result of the conservative character of
the Tc approach, which will be discussed in the following.

3.2. Number of additional experiments to achieve model discrimination

The number of additional experiments that have to be performed
before the most appropriate model can be identified is an important
aspect of the performance of a given OED/MD approach. Before starting
the discussion of the obtained results, it is interesting to note that even
with a set offifty randomly generated experiments it was not possible to
identify the most appropriate model (results not shown), while model
discrimination could be achieved in far less experiments with any of the
selected OED/MD approaches. The fifty random experiments were
generated by randomly choosing the sampling times (between 0 and
20 min) and the initial concentrations of glucose, ATP andPEP (between
0 and 2 mM). This result clearly illustrates the necessity or at least the
importance of performing experiments that are designed in a rational
way, that is, designed with the aim to achieve model discrimination.

As explained earlier (Section 2), themodel discrimination procedure
was initiated with one of the five preliminary experiments and each of
these was repeated thirty times to account for the influence of the
measurement error. The number of experiments that were required in
the different model discrimination runs are presented as boxplots in
Fig. 2. This figure contains five subfigures with a white background
(entitled ξ1i , with i=1,…, 5) and one subfigure with a gray background
(entitled ξ11−ξ15). The former presents the results obtained for the
simulations where the model discrimination procedure was initiated
with thepreliminary experiment indicated in the title of the correspond-
ing subfigure,whereas theonewith thegraybackgroundgives anoverall
picture of the number of required experiments and presents the values
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of all model discrimination runs (4×150=600 in total). Note that in
these figures, the preliminary experiment corresponds to experiment
number one. In other words, Fig. 2 shows the number of required
experiments, and not the number of required additional experiments.
Also note that themedianof thenumber of required experiments,which
will be used frequently in the discussion below, cannot always be
determined unambiguously from these boxplots (more precisely, when
the horizontal line that indicates the median coincides with one of the
edges of the box). Therefore, the median of the number of required
experiments is also given in the upper right corners.

From the results shown in Fig. 2, one can see that the highest number
of required experiments occurswhen the Ta approach is used, regardless
of the information content of the preliminary experiment. As discussed
earlier, the Ta approach is the most naive one. Therefore, the
discriminatory potential of the proposed experiments is often mis-
judged, and it is not surprising that the Ta approach is the worst
performing one when it comes to the required number of experiments.
This also clearly illustrates that it is important to take into account the
uncertaintieswhen designing optimal discriminatory experiments. This
was advocated before from a theoretical or conceptual point of view in
[8,10,15,38] (among others), but was never shown so unambiguously.
In addition, one can see that the number of required experiments varies
significantly among the repetitions. The latter can be observed for each
of the starting situations, except for ξ1

1. This large variability can be
explained by the fact that the Ta approach allows taking samples even
when the measurement error is high. Indeed, although the first
discriminatory experiment is the same for each of the runs that were
initiatedwith a certain preliminary experiment, the generated data sets
of the other experiments can differ significantly because of this
measurement error. Since the model parameters are estimated from
these data sets, large differences in these parameter estimates can be
expected. These obviously affect the model discrimination runs that
follow and lead to the observed variability among the different
repetitions. This variability also reflects the importance to include the
information on the measurement errors when designing the discrimi-
natory experiment.
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For both the Tb and the Tc approaches, themedian of the number of
required experiments equals five and one could conclude that both
approaches perform equally well. That these approaches perform
better than the Ta approach can be seen as an illustration of the
importance of considering the measurement errors in the design of
the experiments, and it confirms some of the conclusions drawn from
the results for the Ta approach discussed above. However, a close(r)
investigation of the boxplots in Fig. 2 and especially of the histograms
in Fig. 3 indicates that the Tb approach is preferred over the Tc
approach. Although the median of the number of required experi-
ments is the same, the distributions are clearly different and in favor
of the Tb approach. Knowing that the Tc approach has frequently been
applied in literature (for instance in [6,7,24,37]) and that it was
originally introduced as a conceptual improvement of the Tb approach,
this result is somewhat surprising and may be related to the fact that
the information content of the designed experiment is not fully
considered during the design. This will be further discussed below,
together with the results of the Td approach.

The anticipatory approach (Td) does take the information content of
the to-be-performed experiment into account and performs better than
the other approaches, regardless of the information content of the
preliminary experiment. Indeed, for each of the starting situations,
model discrimination was achieved with the least amount of experi-
mental effort. However, one can see that the variability among the
different repetitions is slightly larger than the variability observed for
the Tc approach. The latter can be explained as follows. Both approaches
use the currently available parameter estimates to predict the outcome
of the proposed experiment and the uncertainty associated with it, but
the Tc approach is more conservative than the Td approach because it
only uses the information of the already performed experiments to
evaluate the proposed experiment for its discriminatory potential. In
other words, the Td approach is more sensitive to the accuracy of the
available parameter estimates, but when the available parameter
estimates are close to their actual values, the discriminatory potential
of the designed experiment is assessed in a better way compared to the
other approaches (as discussed in [15]). However, when the parameter
estimates used in the experimental design differ significantly from the
ones obtained after performing the designed experiment, the discrimi-
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Fig. 3. Histograms showing the number of experiments required to achieve model
discrimination for each of the selected approaches (Ta, Tb, Tc and Td), thereby using the
results obtained from all starting situations (gray figure from Fig. 2). The solid vertical
lines indicate the median of the number of required experiments, while the dashed
lines indicate the mean number of required experiments.
natory potential of the experimentmay not be as good as one expected.
If this occurs, the designed experimentmay not significantly contribute
to the discriminatory potential of the experiments performed so far,
and, in the end, an increased number of experiments will be required
before themost appropriatemodel can be identified. Thismight explain
why a large tail can be observed for the histogram of the Td approach.
Nevertheless, the results in Figs. 2 and 3 show that the Td approach
generally results in faster model discrimination compared to the Tc
approach, which may indicate that, at least in this case study, the
parameter estimates did not change considerably during the model
discrimination procedure.

Note that Figs. 2 and 3 represent the number of experiments that
are performed until the model discrimination procedure stops, as
explained in Section 3.1, regardless of the outcome. In this respect,
one could argue that only those runs should be considered in the
evaluation where model m5 was identified as the most appropriate
model, but the results nor the discussion are significantly influenced
when doing so (results shown in [14]). In other words, the runs in
which, for instance, all rival models are rejected are not systematically
those for which a high or low number of experiments are required.

To conclude this discussion, note that, recently, the Ta approach
was reintroduced [30] to address model discrimination problems in
the study of complex biological networks (systems biology). The
authors' rationale is that the optimal discriminatory experiment is
found after maximizing the differences between the outputs (or
predictions) of the rival models (which is basically the same as in the
design criterion of Hunter and Reiner (1965)) to ensure that even a
noisy measurement has a good chance of discriminating between the
models. This is somewhat conflicting with the rationale behind the Tb,
Tc and Td approaches and advocated in previous work on this subject
(for instance in [8,10,15]), where the message was to incorporate
these uncertainties in the design criterion. Because the authors of the
referred paper [30] mention the high costs of performing experiments
as one of the reasons why one should carefully design experiments,
the results presented above may be relevant in future applications of
OED/MD in the field of systems biology, because they clearly showed
that model discrimination could be achieved in less experiments
when the different sources of uncertainty are considered.
3.3. Evaluation of the quality of the parameter estimates

A third aspect that has to be considered in the evaluation of the
approaches is thequality of the parameter estimates obtained at the end
of the experiment sequence. The high dependency of the approaches on
the quality of the parameter estimates is mentioned as one of themajor
drawbacks of OED/MD in [31]. Nevertheless, the Tc and Td provide away
to deal with this by incorporating the uncertainty on the parameter
estimates in the design criterion. Here, we are especially interested in
the quality of the parameter estimates of the model that is eventually
identified as the most appropriate one. Indeed, model discrimination is
only one step of a more general model building procedure, and once an
appropriate model is identified through model discrimination, the
quality of its parameter estimates often has to be improved before the
model can actually be applied for its intended use. This is important
because inaccurate parameter estimates result in inaccurate (or
uncertain) model predictions, which are obviously not desired. To
increase the quality of the parameter estimates, dedicated experiments
can be designed (using the experimental design techniques (OED/PE)
explained for instance in [4,12,20,25,32,42]) and performed. In this
respect, it would be interesting to see whether there is a difference
among the approaches concerning the evolution of the quality of the
parameter estimates throughout the model discrimination procedure,
because this may have an influence on the overall required number of
experiments (modeldiscrimination andparameter estimation). Inother
words, if the parameter estimates are already of a high qualitywhen the
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model discrimination procedure ends, less additional experiments will
be required to refine the parameter estimates afterwards.

To evaluate the quality of the parameter estimates, the value of the
D-optimality criterion is used. This criterion is frequently used in
optimal experimental design for parameter estimation (OED/PE) to
quantify the information content of an experiment with regard to the
parameters of a particular model. Its value is inversely proportional to
the volume of the confidence region of the parameter estimates, and
experiments that are characterized by a large criterion value are thus
expected to bring forth more accurate parameter estimates than
experiments with a small criterion value. For more information on the
D-optimality criterion, the reader is referred to references cited above
where this and other design criteria for OED/PE purposes are described
in more detail.

In Fig. 4, the evolution of the D-optimality criterion values of model
m5 are shown in gray for each of the (thirty) runs that were initiated
with experiment ξ11 and where the Td approach was used to design the
experiments. At first sight, it may seem strange that the criterion values
are not (always) monotonically increasing with the number of per-
formed experiments. Indeed, the D-optimality criterion value repre-
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the selected approaches for OED/MD. The evolution of the median criterion values of the oth
from which the median was determined will be indicated by the size of a bullet symbol an
sents the information content of the set of experiments and one would
expect that this information content can only increase when new
information is collected from an additional experiment. However, the
decreases in the criterion values can be explained by the fact that the
model parameters are re-estimated after performing the new experi-
ment. Since the D-optimality criterion value is dependent on these
parameter estimates, a non-monotonic profile can be obtained.

From Fig. 4 and from the discussion held in the previous section, it
is clear that the number of required experiments differs among the
runs.When the results are represented as in Fig. 4, their interpretation
would be hampered and it would be difficult to compare the results
obtained for the different starting situations and with the different
approaches to OED/MD. Therefore, the results will be presented
differently in the following. The median of the D-optimality criterion
values will be used to visualize how the quality of the parameter
estimates changes during the model discrimination procedure. The
number of criterion values from which the median was determined
will be indicated and will also be reflected by the size of the bullet
symbol (•). The results obtained when the model discrimination
procedure was initiated with experiments ξ11 and ξ14 are presented in
Figs. 5 and 6, respectively. The results obtained starting from the other
preliminary experiments are similar (see [14]), but are not shown
here for brevity. In these figures, the median of the D-optimality
criterion values for a particular OED/MD approach is shown in black,
while the values of the other approaches are shown in gray to
facilitate their mutual comparison.

From these figures, one can conclude that the Ta, Tb and Td
approaches perform better than the Tc approach, in the sense that the
rate at which the D-optimality criterion values (or the quality of the
parameter estimates) increases is higher. Indeed, one can see that the Tc
approach is the worst performing one, and its performance is sig-
nificantly worse (Figs. 5 and 6) when the model discrimination
procedure is initialized with preliminary experiments ξ1

1 and ξ1
4 (this

was not the case for the runs starting from experiment ξ12 (results in
[14])). The similarity in the performance of the Ta, Tb approaches on the
one hand and Td approach on the other hand, indicates that the
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information one expects to collect by performing the experiment
designedusing theTd approachwill reduce theuncertainty on themodel
predictions such that theexperimental designbecomesprimarily driven
by the difference in the model predictions (and the uncertainty on the
measurements), as already observed before in [15]. Still, one can state
that the Td approach performs slightly better than the other ones, or, in
other words, the Td approach generally results in experiments with a
larger information content with regard to the parameter estimates
compared to the other approaches.

That the Tc approach can result in a poor performancewith regard to
the quality of the parameter estimates, is in agreement with the
concepts from which it is derived. As the Tc approach seeks a balance
between the difference in the model predictions and the uncertainty
associated with it, it will obviously avoid to take samples where the
uncertainty on the model predictions is (too) large. However, since
uncertainty is to a large extent determined by the sensitivities of these
predictions to the values of themodel parameters (see Eq. (9)), this also
has an impact on the information content of the designed experiment.
Indeed, the highest information content with regard to the model
parameters is found where these sensitivities are large (as explained
in the already cited references on OED/PE). In other words, the Tc
approach will not exploit the information present in regions where the
model prediction uncertainty is large, unless the difference in themodel
predictions is significantly larger at these points.

When the Td approach is used, the information that will be
collected on the model parameters when performing the designed
experiment is already considered in the evaluation of its discrimina-
tory potential. This (small) conceptual differencewith the Tc approach
has important consequences. Indeed, experiments that are informa-
tive with regard to the model parameters will indirectly contribute to
a reduction of the uncertainty on the model predictions. Therefore,
the balance between the difference in model predictions and the
uncertainty associated with it will shift towards the former compared
to the Tc approach. In other words, the regions where the information
content with regard to the model parameters is highest, will more
likely be exploited by the Td approach, whereas they will be avoided
by the Tc approach.
That the use of the Td approach may result in improved parameter
estimates, was also noted in [38], where it is stated that “the use of [the
anticipatory approach] allows for simultaneous improvement of model
discrimination and parameter estimation, as pursued by many researches
in the field.” However, although this statement is in agreement with
what was observed in this work, it should not be seen as an absolute
truth. Indeed, although the uncertainty on the parameter estimates
plays its role in the design of discriminatory experiments, the latter is
primarily driven by the difference in themodel predictions. It may thus
well be that the informative regions with regard to the parameters do
not coincide with the regions that are interesting with regard to model
discrimination. In such case, the optimal discriminatory experiment
may not be informative at all with respect to the parameters and no
significant improvementof theparameter estimateswould beobserved.
In addition, it should be kept inmind that the experiments are designed
based on the predictions of both rival models. The regions (or
experiments) that are informative for modelmi may not be informative
at all for model mj.

3.4. Rate at which inadequate models are identified

In the discussion above, it was assumed that both time and money
were available to perform experiments until the most appropriate
model was identified. However, in practice, these resources may be
limitedand themodel discriminationproceduremayhave tobe stopped
after a particular number of experiments. In this respect, it is important
to look at the rate at which inadequate models are identified. Indeed,
when the model discrimination procedure is stopped before the most
appropriate model is identified, the modeller will have to select it from
the models that could not yet be invalidated. It is clear that model
selection (where the best model is selected from a set of rival models
without performing additional experiments) is less challenging when
the number of models to choose from is limited.

For this aspect of the performance evaluation, the number ofmodels
that could not yet be invalidated after each step of the sequential
procedure will be investigated. The median value of the number of
remaining models obtained for the different runs of the model
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Table 4
The median value of the number of remaining models obtained after performing the
first discriminatory experiment designed using the different approaches (Ta, Tb, Tc and
Td). To increase the interpretability of these results, the lowest median values for a
given preliminary experiment are indicated in bold.

Preliminary experiment Ta Tb Tc Td

ξ11 2 2 2 2
ξ12 5 3 3 2
ξ13 3 2 2 2
ξ14 3 2 9 3
ξ15 3 3.5 2 2
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discrimination procedure are shown in Fig. 7a, b and c for the scenarios
with preliminary experiments ξ12, ξ14 and ξ15, respectively. Note that the
results obtainedwhen themodel discrimination procedure is initialized
with the other preliminary experiments are similar (see [14]), but are
not shown here for brevity.

From the results shown in Fig. 7, one can clearly see that, in general,
most inadequatemodels are identifiedafter performing thefirst optimal
discriminatory experiment. Therefore, the median of the number of
adequate models remaining after performing the first designed
experiment is tabulated in Table 4 and will be used to facilitate the
discussion. Although the results presented in Fig. 7 and Table 4 are
rather inconclusive, one can still observe that the Ta approach is the
worst performing approach in most of the cases (although its per-
formance is not bad). The performance of the Tb and the Tc approaches
is comparable, while the Td approach performs slightly better than
the other ones.
Note that an interesting remark can be made when looking at the
results presented in Fig. 7b. Here, one can see that the number of
adequate models increases from five to nine after performing the
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first discriminatory experiment designed according to the Tc approach.
Although this observation only has a minor influence on the per-
formance evaluation of the different approaches, it is an interesting one
because it clearly indicates the need to reconsider all models when new
experimental data becomes available and illustrates that one should be
aware of the possibility that a goodmodel can accidentally be appointed
as inadequate. It is therefore recommended to reconsider all models
after performing new(ly designed) experiments.

4. Conclusions

The performance of the recently presented anticipatory approach
for OED/MD was compared with three older approaches to design
optimal discriminatory experiments and it was evaluated by looking
at four aspects of discrimination performance: (1) the outcome of the
model discrimination procedure, (2) the number of experiments that
were required before the model discrimination procedure ended,
(3) the evolution of the uncertainty on (or the quality of) the parameter
estimates during the model discrimination procedure, and (4) the rate
at which the number of adequate models decreases.

The results have shown that it definitely makes sense to design
discriminatory experiments (regardless of the approach used to design
them), as model discrimination could not be achieved from random
experiments. The results also clearly showed that it is important to
consider the uncertainties on the measurements and the model
predictions when designing the discriminatory experiments. One
could also conclude that the approach proposed by Buzzi-Ferraris
appeared to be a rather conservative one. Although the true model was
always identified as the most appropriate one, more experiments were
required compared to the other approaches for parameter estimation. In
addition, the information content (with regard to the parameter
estimates) of the experiments designed using this approach was often
lower than that obtained from the other approaches. With the
anticipatory approach, on the other hand, model discrimination was
achieved in the lowest number of experiments, and it generally resulted
in experiments with a larger information content for parameter
estimation. In addition, the rate at which the inadequate models were
identifiedwas largest for the anticipatory approach. Based on the results
obtained in this case study, one can conclude that the anticipatory
approach to design optimal discriminatory experiments is preferred.

Acknowledgments

The authors want to thank the Institute for the Promotion of
Innovation by Science and Technology in Flanders for financial support
in the framework of SBO-project 040125 (MEMORE). Peter Vanrolleghem
holds the Canada Research Chair on Water Quality Modelling.
References

[1] E. Andrianantoandro, S. Basu, D.K. Karig, R. Weiss, Synthetic biology: new
engineering rules for an emerging discipline, Molecular Systems Biology (2006)
[2:2006.0028].

[2] A.C. Atkinson, A.N. Donev, Optimum experimental design, Oxford University
Press, New York, 1992 328 pages.

[3] J.E. Bailey, Mathematical modeling and analysis in biochemical engineering: past
accomplishments and future opportunities, Biotechnology Progress 14 (1) (1998)
8–20.

[4] M. Baltes, R. Schneider, C. Sturm, M. Reuss, Optimal experimental design for
parameterestimation inunstructured growthmodels, BiotechnologyProgress 10(5)
(1994) 480–488.

[5] J.R. Banga, Optimization in computational systems biology, BMC Systems Biology
2 (2008) 47.

[6] A.L. Burke, T.A. Duever, A. Penlidis, Model discrimination via designed experi-
ments: discrimination between the terminal and penultimate models based on
rate data, Chemical Engineering Science 50 (10) (1995) 1619–1634.

[7] A.L. Burke, T.A. Duever, A. Penlidis, An experimental verification of statistical
discrimination between the terminal and penultimate polymerization models,
Journal of Polymer Science: Part A: Polymer Chemistry 34 (1996) 2665–2678.
[8] G. Buzzi-Ferraris, P. Forzatti, G. Emig, H. Hofmann, Sequential experimental design
procedure for model discrimination in the case of multiple responses, Chemical
Engineering Science 39 (1) (1984) 81–85.

[9] G. Buzzi-Ferraris, P. Forzatti, P. Canu, An improved version of a sequential design
criterion for discriminating among rival multiresponse models, Chemical
Engineering Science 54 (2) (1990) 477–481.

[10] B.H. Chen, S.P. Asprey, On the design of optimally informative dynamic
experiments for model discrimination in multiresponse nonlinear situations,
Industrial and Engineering Chemistry Research 42 (2003) 1379–1390.

[11] A. de Brauwere, F. De Ridder, R. Pintelon, M. Elskens, J. Schoukens, W. Baeyens,
Model selection through a statistical analysis of theminimum of aweighted least
squares cost function, Chemometrics and Intelligent Laboratory Systems 76 (2004)
163–173.

[12] D.J.W. De Pauw, P.A. Vanrolleghem, Designing and performing experiments for
model calibration using an automated iterative procedure, Water Science and
Technology 53 (1) (2006) 117–127.

[13] B. Di Ventura, C. Lemerle, K. Michalodimitrakis, L. Serrano, From in vivo to in silico
biology and back, Nature 443 (2006) 527–533.

[14] B.M.R. Donckels (2009). Optimal experimental design to discriminate among rival
dyanamic mathematical models. PhD Thesis. Faculty of Bioscience Engineering.
Ghent University. pp. 287.

[15] B.M.R. Donckels, D.J.W. De Pauw, B. De Baets, J. Maertens, P.A. Vanrolleghem, An
anticipatory approach to optimal experimental design for model discrimination,
Chemometrics and Intelligent Laboratory Systems 95 (1) (2009) 53–63.

[16] B.M.R. Donckels, D.J.W. De Pauw, P.A. Vanrolleghem, B. De Baets, A kernel-based
method to determine optimal sampling times for the simultaneous estimation of
the parameters of rival mathematical models, Journal of Computational Chemistry
30 (13) (2009) 2064–2077.

[17] B.M.R. Donckels, D.J.W. De Pauw, P.A. Vanrolleghem, B. De Baets, An ideal point
method for the design of compromise experiments to simultaneously estimate
the parameters of rival mathematical models, Chemical Engineering Science 65
(5) (2010) 1705–1719.

[18] F.J. Doyle III, J. Stelling, Systems interface biology, Journal of the Royal Society,
Interface 3 (10) (2006) 603–616.

[19] J. Fisher, T.A. Henzinger, Executable cell biology, Nature Biotechnology 25 (2007)
1239–1249.

[20] G. Franceschini, S. Macchietto, Model-based design of experiments for parameter
precision: state of the art, Chemical Engineering Science 63 (19) (2008) 4846–4872.

[21] M. Heinemann, S. Panke, Synthetic biology – putting engineering into biology,
Bioinformatics 22 (22) (2006) 2790–2799.

[22] W.G. Hunter, A.M. Reiner, Designs for discriminating between two rival models,
Technometrics 7 (1965) 307–323.

[23] H. Kitano, Computational systems biology, Nature 420 (2002) 206–210.
[24] A. Kremling, S. Fischer, K. Gadkar, F.J. Doyle, T. Sauter, E. Bullinger, F. Allgöwer, E.D.

Gilles, A benchmark for methods in reverse engineering and model discrimina-
tion: problem formulation and solutions, Genome Research 14 (2004)
1773–1785.

[25] C. Kreutz, J. Timmer, Systems biology: experimental design, FEBS Journal 276
(2009) 923–942.

[26] L. Kuepfer, M. Peter, U. Sauer, J. Stelling, Ensemble modeling for analysis of cell
signaling dynamics, Nature Biotechnology 25 (2007) 1001–1006.

[27] L. Ljung, System Identification, Theory for the User, Prentice Hall, 1999 608 pages.
[28] S. Marsili-Libelli, S. Guerrizio, N. Checchi, Confidence regions of estimated

parameters for ecological systems, Ecological Modelling 165 (2003) 127–146.
[29] R.Mehra, Optimal input signals for parameter estimation indynamic systems– survey

and new results, IEEE Transactions on Automatic Control 19 (6) (1974) 753–768.
[30] B. Mélykúti1, E. August, A. Papachristodoulou, H. El-Samad, Discriminating

between rival biochemical network models: three approaches to optimal
experiment design, BMC Systems Biology 4 (1) (2010).

[31] C. Michalik, M. Stuckert, W. Marquardt, Optimal experimental design for
discriminating numerous model candidates: the AWDC criterion, Industrial and
Engineering Chemistry Research 49 (2) (2010) 913–919.

[32] A. Munack, Some improvements in the identification of bioprocesses, in: M.N.
Karim, G. Stephanoloulos (Eds.), Modelling and Control of Biotechnical Processes,
Pergamon Press, Oxford, 1992, pp. 89–94.

[33] S. Nelander, W. Wang, B. Nilsson, Q.-B. She, C. Pratilas, N. Rosen, P. Gennemark, C.
Sander, Models from experiments: combinatorial drug perturbations of cancer
cells, Molecular Systems Biology 4 (2008) 216.

[34] T. Ogawa, H. Mori, M. Tomita, M. Yoshino, Inhibitory effect of phosphoenolpyr-
uvate on glycolytic enzymes in Escherichia coli, Research in Microbiology 158
(2007) 159–163.

[35] M. Omlin, P. Reichert, A comparison of techniques for the estimation of model
prediction uncertainty, Ecological Modelling 115 (1) (1999) 45–49.

[36] B. Palsson, The challenges of in silico biology, Nature Biotechnology 18 (2000)
1147–1150.

[37] M. Schwaab, F.M. Silva, C.A. Queipo, A.G. Barreto Jr., M. Nele, J.C. Pinto, A new
approach for sequential experimental design for model discrimination, Chemical
Engineering Science 61 (2006) 5791–5806.

[38] M. Schwaab, J.L. Monteiro, J.C. Pinto, Sequential experimental design for model
discrimination. Taking into account the posterior covariance matrix of
differences between model predictions, Chemical Engineering Science 63
(2008) 2408–2419.

[39] M.A.B. Ternbach, C. Bollman, C. Wandrey, R. Takors, Application of model
discriminating experimental design for modeling and development of a fermenta-
tive fed-batch L-valine productionprocess, Biotechnology andBioengineering91 (3)
(2005) 356–368.



31B.M.R. Donckels et al. / Chemometrics and Intelligent Laboratory Systems 110 (2012) 20–31
[40] N.A.W. Van Riel, Dynamic modelling and analysis of biochemical networks:
mechanism-basedmodels andmodel-based experiments, Briefings inBioinformatics
7 (4) (2006) 364–374.

[41] P. Vanrolleghem, M. Van Daele, Optimal experimental design for structure
characterization of biodegradation models: on-line implementation in a respiro-
graphic biosensor, Water Science and Technology 30 (4) (1994) 243–253.
[42] P.A. Vanrolleghem, D. Dochain, Bioprocess model identification, in: J.F.M. Van Impe,
P.A. Vanrolleghem, D.M. Iserentant (Eds.), Advanced Instrumentation, Data Interpre-
tation, and Control of Biotechnological Processes, Kluwer AcademicPublishers,
Dordrecht, 1998, pp. 251–318.

[43] E. Walter, L. Pronzato, Identification of parametric models from experimental
data, Springer–Verlag, Berlin, Heidelberg, New York, 1997 413 pages.


	Performance assessment of the anticipatory approach to optimal experimental design for model discrimination
	1. Introduction
	2. Methods
	2.1. Mathematical model representation
	2.2. Parameter estimation
	2.3. Model adequacy testing
	2.4. Optimal experimental design for model discrimination
	2.4.1. Design criterion of Hunter and Reiner (1965)
	2.4.2. Modified design criterion of Hunter and Reiner (1965)
	2.4.3. Design criterion of Buzzi-Ferraris (1984)
	2.4.4. Anticipatory approach to OED/MD
	2.4.5. OED/MD for more than two rival models

	2.5. Selection of the most promising approaches to OED/MD
	2.6. Performance measures to evaluate OED/MD design criteria
	2.7. Description of the case study
	2.7.1. Design of the optimal discriminatory experiments
	2.7.2. Design of the case study


	3. Results and discussion
	3.1. Outcome of the model discrimination procedure
	3.2. Number of additional experiments to achieve model discrimination
	3.3. Evaluation of the quality of the parameter estimates
	3.4. Rate at which inadequate models are identified

	4. Conclusions
	Acknowledgments
	References


